Sterrekunde

Is swart gate besig om uit te brei?

Is swart gate besig om uit te brei?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Ons weet dat dit 'n algemene bewering is dat daar 'n heelal in elke swart gat is. Daar word ook geglo dat die heelal uitbrei. As ons albei gebruik, kan ons die gevolgtrekking maak dat elke swart gat uitbrei?


Die meeste $ ^ dolk $ swart gate is inderdaad uit te brei, maar nie omdat die Heelal uitbrei nie. Inteendeel, hul grootte (meer presies hul Schwarzschild-radius) neem proporsioneel toe aan hul massa, sodat hulle groei namate hulle meer materie akkretreer.

Dit is 'n algemene wanopvatting dat alles saam met die uitbreidende heelal uitbrei. Dit doen nie. Op klein skale, dit wil sê swart gate, planete, sterre, sterrestelsels en selfs sterrestelselgroepe, verseker swaartekrag dat hierdie dinge nie groter word nie. Slegs op groot skale, dws sterrestelsels en verder, trek die uitbreidende heelal alles uitmekaar.

Wat die teorie oor 'n heelal binne betref, wil ek ... ek wil nie eers daarheen gaan nie. Ek verwys net na HDE 226868 se opmerking.

$ ^ dolk $Baie klein swart gaatjies sal afneem as gevolg van verdamping deur Hawking.


In die standaard ΛCDM-kosmologie word die uitbreiding van die heelal geskoei deur 'n kosmologiese konstante $ Lambda $, gewoonlik geïnterpreteer as 'n konstante digtheid van donker energie.

'N Kosmologiese konstante wat nie nul is nie, verander die gewone meetkundes in swart gate ietwat. Die eenvoudigste swart gat van Schwarzschild (geïsoleer, ongelaai, nie-roterend) word byvoorbeeld beskryf deur $$ mathrm {d} s ^ 2 = - left (1- frac {2GM} {r} right) mathrm {d } t ^ 2 + links (1- frac {2GM} {r} regs) ^ {- 1} mathrm {d} r ^ 2 + r ^ 2 mathrm {d} Omega ^ 2 text { ,} $$ wat met 'n nie-nul $ Lambda $ die Schwarzschild-de Sitter-ruimtetyd sou wees, beskryf deur die vervanging $$ left (1- frac {2GM} {r} regs) mapsto left (1- frac {2GM} {r} - frac { Lambda r ^ 2} {3} regs) teks {.} $$

Daarom sal 'n kosmologiese konstante nie veroorsaak dat 'n swart gat uitbrei of saamtrek nie. Die grootte (dws van die horison) word eerder effens aangepas deur die kosmologiese konstante. Dieselfde ding gebeur met ander gebonde stelsels, soos sterrestelsels en sterrestelsels: die uitbreiding van die heelal verander in beginsel hul grootte effens, maar die kragte wat hulle bind, vind eenvoudig 'n ewewig teenoor kosmiese uitbreiding.

Dit verg een of ander uitgebreide model van donker energie, waarin dit nie konstant is nie, om krimpende swart gate uit te brei. Maar daar is tans geen bewyse van so iets nie.

Kantaantekening: aangesien die Hawking-temperatuur van enige astrofisiese swart gat baie laer sou wees as die omliggende ruimte (bv. Kosmiese mikrogolfagtergrond), kan ons verwag dat swart gate effens sal uitbrei as gevolg van meer energie uit hul omgewing as wat hulle verloor deur Hawking-straling. . Maar hierdie effek is baie klein en het 'n heel ander meganisme as die uitbreiding van die heelal.


Eenvoudige antwoord

Groot swart gate brei gewoonlik ongelooflik klein uit omdat dit meer dinge (gasse, planete, sterre, ens.) Deur swaartekrag insuig. Hulle brei dus uit, maar nie as gevolg van ons groeiende heelal nie.

Uitsonderings

Volgens Wikipedia kan klein swart gaatjies krimp. Stephen Hawking voorspel dat alle swart gate bestraling het. Klein swart gaatjies wat minder suig, kan meer energie uitstoot as wat hulle intrek, sodat hulle teoreties krimp en toemaak.

Groot sterretjie

Daar is baie bykomende besonderhede wat in hierdie draad ingesluit kan word. Ek dink die belangrikste om daarop te wys, is dat swart gate vyftig jaar gelede nog grotendeels wetenskapfiksie was. Dit is dus 'n relatief nuwe wetenskap. En selfs as ons hulle 200-300 jaar lank bestudeer het, is dit moeilik om waar te neem en prakties onmoontlik om mee te eksperimenteer. Die punt is dat die meeste swartgatkennis eintlik swartgateteorie is.

Let op swart gate

Hier is 'n relevante Wiki-uittreksel:

In Junie 2008 het NASA die Fermi-ruimteteleskoop geloods, wat op soek is na die terminale gammastraalflitse wat verwag word deur die verdamping van oer-swart gate. In die geval dat spekulatiewe groot ekstra dimensieteorieë korrek is, kan die Large Hadron Collider van CERN in staat wees om mikro-swart gate te skep en hul verdamping waar te neem.

Relevante besonderhede oor swart gate

Swart gate was eens massiewe sterre. Sterre het massiewe swaartekrag, maar hulle stort nie in totdat hulle brandstof opraak nie. As daar nie meer brandstof is nie, brei dit uit en stort dan ineen. Groot sterre het soveel swaartekrag dat hulle in 'n klein sfeer ineenstort met swaartekrag so intens dat lig nie daaraan kan ontsnap nie. Dit is wanneer 'n swart "gat" gebore word. Eintlik is dit meer soos 'n swart bol. Dit blyk net 'n gat te wees omdat daar geen lig ontsnap nie. Binne die sfeer kan daar 'n gat wees, maar niemand weet nie.

Verdere verduideliking oor die uitbreiding van swart gate

Groter sterre het meer massa, so as hulle ineenstort, het hulle meer swaartekrag en die vermeende "gat" is groter. Gewoonlik het groot sterrestelsels groot swart gate in hul middel, en klein sterrestelsels het klein swart gate. Met verloop van tyd sal die swart gat meer materie (gasse, planete, asteroïdes, ens.) In sy swartheidsfeer trek. Dit dra by tot die massa en verhoog die swaartekrag stadig. Meer swaartekrag beteken 'n wyer radius van swart waarvandaan nie eens lig ontsnap nie.

Onbeantwoord / teoreties

Wanneer hou 'n swart gat op met groei en waarom? Dit is moeilik om te antwoord, want ons het geen data oor die binnekant van 'n swart gat nie. Sommige mense teoretiseer die geweldige swaartekrag buig ruimte / tyd om 'n wurmgat te skep. Baie vrae oor ruimte word in ons leeftyd beantwoord deur waar te neem en te eksperimenteer. Swart gate is moeilik waarneembaar en nog moeiliker om mee te eksperimenteer. Die meeste 'antwoorde' in ons leeftyd is meer teorie as bewese fisika.


Is swart gate besig om uit te brei? - Sterrekunde

24 Junie 2021 13:45 24 Junie

Cornell Universiteit het hul nuwe kursus met die titel "Black Holes: Race and the Cosmos" bekendgestel ondersoek die verband tussen die dekades oue term "swart gate" en. rassisme.

Sou u minder van 'n Ivy League-universiteit verwag?

Universiteite het basies linkse indoktrinerende terreine geword en het wakker soldate opgepomp wat opgelei is om mikro-aggressiewe rassisme te ontdek waarna hulle in alle uithoeke van die wêreld moet soek.

Maar ek dink soms, as rassisme so moeilik is om te vind, moet ons buite ons planeet kyk ...

Die kursusopsomming verduidelik dat teoretici astronomiebegrippe gebruik om die geskiedenis van ras op kreatiewe maniere te interpreteer.

"Konvensionele wysheid wil hê dat die 'swart' in swart gate niks met ras te make het nie. Daar kan tog geen verband wees tussen die kosmos en die idee van rasseswartheid nie. Kan daar? Teoretici, kunstenaars, fiksieskrywers van hedendaagse swart studies implisiet en presies so 'n verband positief te stel. '

Um. nee, ek dink nie daar kan 'n verband wees nie, maar ek wed dat jy my gaan sê dat ek verkeerd is ... en 'n rassis.

Die idee van "rasseswartheid" is verwarrend. Beteken dit dat ons nie die kleur swart kan gebruik om iets te beskryf nie?

Wat van swart olywe? Hulle is heerlik ...

Swartbone, swart tee, swartbeer, afpersing, swart vorm ... Ek kan aanhou en aanhou. En wat as u 'n swart t-hemp wil koop ??

Laat ons almal ons oë uitsteek en blind word, en nooit weer hoef te sien of van kleur te praat nie.

Hierdie kursus maak deel uit van die skool se $ 60,000-jaarlikse onderrig en bevat onder meer die werk en musiek van Outkast, onder andere kunstenaars.


Is swart gate besig om uit te brei? - Sterrekunde

24 Junie 2021 13:45 24 Junie

Cornell Universiteit het hul nuwe kursus met die titel "Black Holes: Race and the Cosmos" bekendgestel ondersoek die verband tussen die dekades oue term "swart gate" en. rassisme.

Sou u minder van 'n Ivy League-universiteit verwag?

Universiteite het basies linkse indoktrinerende terreine geword en het wakker soldate opgepomp wat opgelei is om mikro-aggressiewe rassisme te ontdek waarna hulle in alle uithoeke van die wêreld moet soek.

Maar ek dink soms, as rassisme so moeilik is om te vind, moet ons buite ons planeet kyk ...

Die kursusopsomming verduidelik dat teoretici astronomiebegrippe gebruik om die geskiedenis van ras op kreatiewe maniere te interpreteer.

"Konvensionele wysheid wil hê dat die 'swart' in swart gate niks met ras te make het nie. Daar kan tog geen verband wees tussen die kosmos en die idee van rasseswartheid nie. Kan daar? Teoretici, kunstenaars, fiksieskrywers van hedendaagse swart studies implisiet en presies so 'n verband positief te stel. '

Um. nee, ek dink nie daar kan 'n verband wees nie, maar ek wed dat jy my gaan sê dat ek verkeerd is ... en 'n rassis.

Die idee van "rasseswartheid" is verwarrend. Beteken dit dat ons nie die kleur swart kan gebruik om iets te beskryf nie?

Wat van swart olywe? Hulle is heerlik ...

Swartbone, swart tee, swartbeer, afpersing, swart vorm ... Ek kan aanhou en aanhou. En wat as u 'n swart t-hemp wil koop ??

Laat ons almal ons oë uitsteek en blind word, en nooit weer hoef te sien of van kleur te praat nie.

Hierdie kursus maak deel uit van die skool se $ 60,000-jaarlikse onderrig en bevat onder meer die werk en musiek van Outkast, onder andere kunstenaars.


'Race and the cosmos' Universiteit begin wakker kursus wat rassestudies en swart gate verbind

Skakel gekopieer

Swartgat: wetenskaplikes ontdek een van die kleinste wat opgeteken is

As u inteken, sal ons die inligting wat u verskaf gebruik om hierdie nuusbriewe aan u te stuur. Soms bevat dit aanbevelings vir ander verwante nuusbriewe of dienste wat ons aanbied. Ons privaatheidskennisgewing verduidelik meer oor hoe ons u data en u regte gebruik. U kan te eniger tyd uitteken.

Die Universiteit van New York & rsquos het nuwe kursus Black Holes: Race and the Cosmos wakker gemaak, en probeer om 'n verband tussen rasse-vooroordeel en wetenskaplike terminologie te bewys. Die kursusbeskrywing beweer dat studente die grondbeginsels van sterrekunde-konsepte deur middel van voorlesings in Black Studies & rdquo benoem om te weerstaan ​​teen & ldquoconventional wysheid & rdquo dat swart gate nie rassisties is nie.

Gewild

Dit het bygevoeg: & ldquo Konvensionele wysheid wil hê dat die & lsquoblack & rsquo in swart gate niks met ras te doen het nie. Daar kan sekerlik geen verband wees tussen die kosmos en die idee van rasseswartheid nie. Kan daar?

& ldquo Hedendaagse teoretici, kunstenaars, fiksieskrywers in swart studies stel presies so 'n verband implisiet en eksplisiet voor.

& ldquo Theoretici gebruik sterrekundige begrippe soos & lsquoblack holes & rsquo en & lsquoevent horisonne & rsquo om die geskiedenis van ras op kreatiewe maniere te interpreteer, terwyl kunstenaars en musikante swartheid toor deur kosmologiese temas en beelde. & rdquo

Volgens die universiteit word die professore Nicholas Battaglia en Parisa Vaziri aangebied.

Illustrasie van die kunstenaar van 'n swart gat (Beeld: getty)

Swart gate is 'n plek in die ruimte waar swaartekrag soveel trek dat selfs lig nie kan uitkom nie (Foto: getty)

Verwante artikels

Die kursus sal die bestudering van die musiek van kunstenaars soos Sun Ra, Outkast en Janelle Monae insluit.

Die beskrywing van die klas het bygevoeg: & ldquoAstronomie konsepte sal die elektromagnetiese spektrum, sterre evolusie en algemene relatiwiteit insluit. & Rdquo

Volgens NASA is swart gate 'n plek in die ruimte waar swaartekrag soveel trek dat selfs lig nie kan uitkom nie en kan gebeur as 'n ster sterf.

Hulle het bygevoeg: & ldquo Omdat geen lig kan uitkom nie, kan mense nie swart gate sien nie. Hulle is onsigbaar. & Rdquo

Wat is 'n swart gat? (Beeld: Express.co.uk)

Die verskynsel word eers 'n swart gat genoem jare nadat dit deur Albert Einstein as 'n deel van sy algemene relatiwiteitsteorie in 1915 geïdentifiseer is.

Die sterrekundige Karl Schwarzschild het uitgebrei oor Einstein se navorsing om swart gate meer te definieer.

Maar dit was eers tot 1967 dat die term & lsquoblack hole & rsquo geskep is en die eerste keer deur dr John A. Wheeler, 'n Amerikaanse wetenskaplike, gebruik is.

Volgens berigte het dr Wheeler op 'n konferensie in New York gepraat toe iemand in die gehoor die term uitgeroep het.

Die wetenskaplike het dit in sy werke gebruik en bekend geword omdat hy die term & lsquoblack hole & rsquo geskep het.


Inhoud

Oneindige uitbreiding bepaal nie die algehele ruimtelike kromming van die heelal nie. Dit kan oop (met negatiewe ruimtelike kromming), plat of geslote (positiewe ruimtelike kromming) wees, alhoewel as dit gesluit is, voldoende donker energie moet wees om die gravitasiekragte teë te werk, anders sal die heelal in 'n groot krisis eindig. [9]

Waarnemings van die kosmiese agtergrondstraling deur die Wilkinson-mikrogolfanisotropie-sonde en die Planck-missie dui daarop dat die heelal ruimtelik plat is en 'n aansienlike hoeveelheid donker energie het. [10] [11] In hierdie geval moet die heelal teen 'n versnelde tempo bly uitbrei. Die versnelling van die uitbreiding van die heelal is ook bevestig deur waarnemings van verre supernovas. [9] As, soos in die konkordansiemodel van fisiese kosmologie (Lambda-koue donker materie of ΛCDM), donker energie in die vorm van 'n kosmologiese konstante is, sal die uitbreiding uiteindelik eksponensiaal word, met die grootte van die heelal wat verdubbel op 'n konstante tempo.

As die teorie van inflasie waar is, het die heelal in die eerste oomblikke van die Oerknal 'n episode deurgegaan wat deur 'n ander vorm van donker energie oorheers is, maar inflasie het geëindig, wat dui op 'n toestandvergelyking wat baie ingewikkelder is as wat tot dusver aanvaar is. dag donker energie. Dit is moontlik dat die donker energie-vergelyking van die staat weer kan verander, wat kan lei tot gevolge wat uiters moeilik is om te parametriseer of voorspel. [ aanhaling nodig ]

In die 1970's is die toekoms van 'n groeiende heelal bestudeer deur die astrofisikus Jamal Islam [12] en die fisikus Freeman Dyson. [13] Toe, in hul boek The Five Ages of the Universe, uit 1999, het die astrofisici Fred Adams en Gregory Laughlin die geskiedenis en die geskiedenis van 'n groeiende heelal in vyf era verdeel. Die eerste, die Oertydperk, is die tyd in die verlede net na die oerknal toe sterre nog nie gevorm het nie. Die tweede, die Stelliferous era, sluit die hedendaagse dag in en al die sterre en sterrestelsels wat nou gesien word. Dit is die tyd waartydens sterre vorm van ineenstortende wolke van gas. In die daaropvolgende Ontaarde era, sal die sterre uitgebrand wees en alle sterre-massa-voorwerpe as sterreste agterlaat - wit dwerge, neutronsterre en swart gate. In die Swartgat-era, wit dwerge, neutronsterre en ander kleiner astronomiese voorwerpe is deur protonbederf vernietig en slegs swart gate agtergelaat. Ten slotte, in die Donker era, selfs swart gate het verdwyn en slegs 'n verdunde gas van fotone en leptone agtergelaat. [14]

Hierdie toekomstige geskiedenis en die tydlyn hieronder veronderstel die voortgesette uitbreiding van die heelal. As die ruimte in die heelal begin saamtrek, kan daaropvolgende gebeure op die tydlyn moontlik nie plaasvind nie, omdat die Big Crunch, die ineenstorting van die heelal in 'n warm, digte toestand soortgelyk aan die na die oerknal, sal oortref. [14] [15]

The Stelliferous Era Edit

Die waarneembare heelal is tans 1,38 × 10 10 (13,8 miljard) jaar oud. [16] Hierdie keer is in die Stelliferous Era. Ongeveer 155 miljoen jaar na die oerknal het die eerste ster ontstaan. Sedertdien het sterre gevorm deur die ineenstorting van klein, digte kernstreke in groot, koue molekulêre wolke van waterstofgas. Aanvanklik produseer dit 'n protostêr wat warm en helder is as gevolg van energie wat deur gravitasiekrimping gegenereer word. Nadat die protostêr 'n tydjie saamtrek, sal die middelpunt daarvan warm genoeg word om waterstof te smelt en sy leeftyd as 'n ster sal behoorlik begin. [14]

Sterre met 'n baie lae massa sal uiteindelik al hul smeltbare waterstof uitput en dan heliumwit dwerge word. [17] Sterre met lae tot medium massa, soos ons eie son, sal van hul massa as 'n planetêre newel verdryf en uiteindelik wit dwerge word. Massiewe sterre sal ontplof in 'n kern-ineenstortende supernova, wat neutronsterre of swart gate agterlaat . [18] In elk geval, alhoewel sommige van die ster se aangeleentheid na die interstellêre medium teruggebring kan word, sal 'n ontaarde oorblyfsel agterbly waarvan die massa nie na die interstellêre medium terugbesorg word nie. Daarom word die toevoer van gas beskikbaar vir stervorming geleidelik uitgeput.

Melkwegstelsel en die Andromeda-sterrestelsel smelt saam in een Edit

Die Andromeda-sterrestelsel is tans ongeveer 2,5 miljoen ligjare weg van ons melkweg, die Melkwegstelsel, en hulle beweeg teen ongeveer 300 kilometer per sekonde na mekaar toe. Ongeveer vyf miljard jaar van nou af, of 19 miljard jaar na die oerknal, sal die Melkweg en die Andromedastelsel met mekaar bots en op grond van huidige bewyse in een groot sterrestelsel saamsmelt. Tot 2012 was daar geen manier om te bevestig of die moontlike botsing sou gebeur of nie. [19] In 2012 het navorsers tot die gevolgtrekking gekom dat die botsing beslis is nadat hulle die Hubble-ruimteteleskoop tussen 2002 en 2010 gebruik het om die beweging van Andromeda op te spoor. [20] Dit lei tot die vorming van Milkdromeda (ook bekend as Milkomeda).

22 miljarde jaar in die toekoms is die vroegste moontlike einde van die heelal in die Big Rip-scenario, met die veronderstelling dat 'n model van donker energie met w = -1.5. [21] [22]

Valse vakuumverval kan oor 20 tot 30 miljard jaar voorkom as Higgs bosonveld metastabiel is. [23] [24] [25]

Samesmelting van plaaslike groepe en sterrestelsels buite die plaaslike superkluster is nie meer toeganklik nie

Die sterrestelsels in die plaaslike groep, die sterrestelsels wat die melkweg en die Andromedastelsel insluit, is swaartekragtig aan mekaar gebind. Daar word verwag dat hul wentelbane tussen 10 11 (100 miljard) en 10 12 (1 triljoen) jaar sal verval en die hele plaaslike groep sal saamsmelt in een groot sterrestelsel. [5]

As ons aanneem dat donker energie die heelal met 'n versnelde tempo laat uitbrei, sal alle sterrestelsels buite die Plaaslike Superkluster oor ongeveer 150 miljard jaar agter die kosmologiese horison verbygaan. Dit sal dan onmoontlik wees vir gebeure in die Plaaslike Superkluster om ander sterrestelsels te beïnvloed. Dit sal eweneens onmoontlik wees vir gebeure na 150 miljard jaar, soos gesien deur waarnemers in verafgeleë sterrestelsels, die gebeure in die Plaaslike Superkluster beïnvloed. [4] 'n Waarnemer in die Local Supercluster sal egter steeds sterrestelsels sien, maar gebeure wat hulle waarneem, sal eksponensieel meer rooiverskuiwing word namate die sterrestelsel die horison nader totdat die tyd in die verre sterrestelsel lyk. Die waarnemer in die Local Supercluster neem nooit gebeure na 150 miljard jaar in hul plaaslike tyd waar nie, en uiteindelik lyk dit asof alle lig- en agtergrondstraling wat buite die Local Supercluster lê, uitflikker as die lig so rooi verskuif word dat die golflengte langer geword het as die fisiese deursnee van die horison.

Tegnies sal dit oneindig lank duur voordat alle oorsaaklike interaksie tussen die Plaaslike Superkluster en hierdie lig ophou. As gevolg van die rooi verskuiwing wat hierbo uiteengesit is, sal die lig egter nie noodwendig vir 'n oneindige hoeveelheid tyd waargeneem word nie, en na 150 miljard jaar sal geen nuwe oorsaaklike interaksie waargeneem word nie.

Na 150 miljard jaar word intergalaktiese vervoer en kommunikasie buite die plaaslike superkluster dus oorsaaklik onmoontlik.

Die helderheid van sterrestelsels begin verminder

8 × 10 11 (800 miljard) jaar van nou af, sal die helderheid van die verskillende sterrestelsels, wat tot dan toe gelyk is aan die huidige, danksy die toenemende helderheid van die oorblywende sterre namate hulle ouer word, begin afneem, aangesien die minder massiewe rooi dwergsterre begin sterf soos wit dwerge. [26]

Sterrestelsels buite die plaaslike superkluster kan nie meer gewysig word nie

2 × 10 12 (2 triljoen) jaar van nou af sal alle sterrestelsels buite die Plaaslike Superkluster in so 'n mate herverskuif word dat selfs gammastrale wat hulle uitstraal, golflengtes langer sal wees as die grootte van die waarneembare heelal van die tyd. Daarom sal hierdie sterrestelsels op geen manier meer waarneembaar wees nie. [4]

Ontaarde era wysig

Oor 10 14 (100 biljoen) jaar sal die stervorming eindig, [5] laat alle stervoorwerpe in die vorm van ontaarde oorblyfsels agter. As protone nie verval nie, sal sterre-massa-voorwerpe stadiger verdwyn, wat hierdie era langer sal laat duur.

Stervorming hou op Edit

Oor 10 14 (100 triljoen) jaar van nou sal die vorming van sterre eindig. Hierdie tydperk, bekend as die "ontaarde era", sal duur totdat die ontaarde oorblyfsels uiteindelik verval. [27] Die minste massiewe sterre neem die langste tyd om hul waterstofbrandstof uit te put (sien sterre evolusie). Die langste lewende sterre in die heelal is dus rooi dwerge met 'n lae massa, met 'n massa van ongeveer 0,08 sonmassas (M ), wat 'n leeftyd van meer as 10 13 (10 biljoen) jaar het. [28] Toevallig is dit vergelykbaar met die tydsduur waaroor stervorming plaasvind. [5] Sodra stervorming eindig en die minste massiewe rooi dwerge hul brandstof opgebruik, sal kernfusie ophou. Die lae massa rooi dwerge sal afkoel en swart dwerge word. [17] Die enigste voorwerpe wat oorbly met meer as planetêre massa, is bruin dwerge, met 'n massa van minder as 0,08 M , en ontaarde oorblyfsels wit dwerge, geproduseer deur sterre met aanvanklike massas tussen ongeveer 0,08 en 8 sonmassas en neutronsterre en swart gate, geproduseer deur sterre met aanvanklike massas meer as 8 M . Die grootste deel van die versameling, ongeveer 90%, is in die vorm van wit dwerge. [6] As daar geen energiebron is nie, sal al hierdie vroeëre liggame afkoel en flou word.

Die heelal sal baie donker word nadat die laaste sterre uitgebrand het. Desondanks kan daar steeds af en toe lig in die heelal wees. Een van die maniere waarop die heelal kan verlig, is as twee koolstof-suurstofwit dwerge met 'n gesamentlike massa van meer as die Chandrasekhar-limiet van ongeveer 1,4 sonmassas saamsmelt. Die resulterende voorwerp sal dan 'n wegloop-termonukleêre samesmelting ondergaan, 'n tipe Ia-supernova produseer en die duisternis van die ontaarde era vir 'n paar weke verdryf. Neutronsterre kan ook bots, en selfs helderder supernovas vorm en tot ses sonmassas ontaarde gas in die interstellêre medium wegdryf. Die resultate van hierdie supernovas kan moontlik nuwe sterre skep. [29] [30] As die gesamentlike massa nie bo die Chandrasekhar-limiet is nie, maar groter is as die minimum massa om koolstof te smelt (ongeveer 0,9 M ), kan 'n koolstofster vervaardig word, met 'n leeftyd van ongeveer 10 6 (1 miljoen) jaar. [14] Ook as twee heliumwit dwerge met 'n gesamentlike massa van minstens 0,3 M bots, kan 'n heliumster geproduseer word, met 'n leeftyd van 'n paar honderd miljoen jaar. [14] Uiteindelik kan bruin dwerge nuwe sterre vorm wat met mekaar bots om 'n rooi dwergster te vorm, wat 10 13 (10 biljoen) jaar kan oorleef, [28] [29] of gas teen baie stadige dosisse van die oorblywende interstellêre aanwas. medium totdat hulle genoeg massa het om waterstofverbranding ook as rooi dwerge te begin. Hierdie proses, ten minste op wit dwerge, kan ook tipe Ia-supernovas veroorsaak. [31]

Planete val of word van 'n baan geslinger deur 'n noue ontmoeting met 'n ander ster Edit

Met verloop van tyd sal die wentelbane van planete verval as gevolg van gravitasiestraling, of word planete uit hul plaaslike stelsels verstoot deur swaartekragversteurings wat veroorsaak word deur ontmoetings met 'n ander sterrestelsel. [32]

Sterreste ontsnap uit sterrestelsels of val in swart gate

Met verloop van tyd ruil voorwerpe in 'n sterrestelsel kinetiese energie uit in 'n proses genaamd dinamiese verslapping, waardeur hul snelheidsverspreiding die verspreiding van Maxwell – Boltzmann benader. [33] Dinamiese ontspanning kan plaasvind deur noue ontmoetings van twee sterre of deur minder gewelddadige, maar meer gereelde ontmoetings in die verte. [34] In die geval van 'n noue ontmoeting sal twee bruin dwerge of sterreste naby mekaar verbygaan. Wanneer dit gebeur, verander die trajekte van die voorwerpe wat betrokke is by die noue ontmoeting effens, op so 'n manier dat hul kinetiese energieë byna gelyk is as voorheen. Na 'n groot aantal ontmoetings is ligter voorwerpe geneig om vinniger te word terwyl die swaarder voorwerpe dit verloor. [14]

As gevolg van dinamiese ontspanning, sal sommige voorwerpe net genoeg energie opdoen om galaktiese ontsnappingssnelheid te bereik en die sterrestelsel te verlaat en 'n kleiner, digter sterrestelsel agter te laat. Aangesien ontmoetings meer gereeld in hierdie digter sterrestelsel voorkom, versnel die proses. Die eindresultaat is dat die meeste voorwerpe (90% tot 99%) uit die sterrestelsel geskiet word, wat 'n klein fraksie (miskien 1% tot 10%) agterlaat wat in die sentrale supermassiewe swart gat val. [5] [14] Daar is voorgestel dat die saak van die gevalle oorblyfsels 'n aanwas-skyf daar rondom sal vorm wat 'n kwasar sal skep, solank daar genoeg stof is. [35]

Moontlike ionisasie van materie Redigeer

In 'n uitbreidende heelal met dalende digtheid en nie-nul-kosmologiese konstante, sou materie-digtheid nul bereik, wat die meeste materie tot gevolg het, behalwe swart dwerge, neutronsterre, swart gate en planete wat by termiese ewewig ioniseer en versprei. [36]

Die volgende tydlyn veronderstel dat protone verval.

Kans: 10 34 (10 desillions) - 10 39 jaar (1 duodecillion)

Die daaropvolgende evolusie van die heelal hang af van die moontlikheid en tempo van protonverval. Eksperimentele bewyse toon dat as die proton onstabiel is, dit 'n halfleeftyd van minstens 10 34 jaar het. [37] Sommige van die Grand Unified-teorieë (GUT's) voorspel langdurige protononstabiliteit tussen 10 31 en 10 36 jaar, met die boonste grens op standaard (nie-supersimmetrie) protonverval op 1,4 × 10 36 jaar en 'n algehele boonste limiet maksimum vir enige protonverval (insluitend supersimmetrie-modelle) op 6 × 10 39 jaar. [38] [39] Onlangse navorsing wat protonleeftyd (indien onstabiel) op 10 34 –10 35-jaarreeks bereik of oorskry, sluit eenvoudiger GUT's en die meeste nie-supersimmetriese modelle uit.

Kernen begin verval. Edit

Daar word vermoed dat neutrone wat aan kerne gebind is, verval met 'n halfleeftyd wat vergelykbaar is met dié van protone. Planete (substellêre voorwerpe) sou in 'n eenvoudige kaskadeproses verval van swaarder elemente tot suiwer waterstof terwyl dit energie uitstraal. [40]

In die geval dat die proton glad nie verval nie, sal sterrevoorwerpe steeds verdwyn, maar stadiger. Sien Toekoms sonder protonverval hieronder.

Korter of langer proton-halfleeftye sal die proses versnel of vertraag. Dit beteken dat die helfte van alle baryoniese materiaal deur protone verval, na 10 37 jaar (die maksimum protonhalfleeftyd wat Adams & amp Laughlin (1997) gebruik), in gammastraalfotone en leptone omgeskakel is.

Alle nukleone verval. Edit

Gegewe ons veronderstelde halfleeftyd van die proton, sal nukleone (protone en gebonde neutrone) ongeveer 1 000 halfleeftye ondergaan teen die tyd dat die heelal 10 40 jaar oud is. Dit beteken dat daar ongeveer 1, 000 (ongeveer 10 - 301) soveel nukleone sal wees as wat daar na raming 10 80 protone in die heelal is, [41] niemand sal aan die einde van die ontaarde ouderdom oorbly nie. Effektief sal alle baroniese materiaal in fotone en leptone verander word. Sommige modelle voorspel die vorming van stabiele positroniumatome met diameters wat groter is as die waarneembare heelal se huidige deursnee (ongeveer 6 · 10 34 meter) [42] binne 10 85 jaar, en dat dit weer na 10 141 jaar tot gammastraling sal verval. [5] [6]

As protone verval by hoër orde kernprosesse

In die geval dat die proton nie verval volgens die teorieë wat hierbo beskryf word nie, sal die ontaarde era langer duur en die swartgat-era oorvleuel of oortref. Op 'n tydskaal van 10 65 jaar word vaste materie geteoretiseer om die atome en molekules moontlik weer te herrangskik via kwantumtunnel, en kan dit as vloeistof optree en gladde sfere word as gevolg van diffusie en swaartekrag. [13] Ontaarde sterrevoorwerpe kan moontlik nog protonbederf ervaar, byvoorbeeld deur prosesse waarby die Adler – Bell – Jackiw anomalie betrokke is, virtuele swart gate, of hoër-dimensie supersimmetrie, moontlik met 'n halfleeftyd van minder as 10 200 jaar. [5]

& gt10 139 jaar van nou af

Die beraming van 2018 se standaardleeftyd voor die ineenstorting van 'n valse vakuum 95% vertrouensinterval is 10 58 tot 10 241 jaar, deels as gevolg van onsekerheid oor die top kwarkmassa. [43]

& gt10 150 jaar van nou af

Alhoewel protone stabiel is in standaardmodelfisika, kan daar 'n kwantumanomalie op die elektrisiteitsvlak bestaan, wat kan veroorsaak dat groepe barione (protone en neutrone) tot antileptone vernietig via die sfaleronoorgang. [44] Sulke oortredings van laryon / lepton het 'n aantal van 3 en kan slegs in veelvoude of groepe van drie barione voorkom, wat sulke gebeurtenisse kan beperk of verbied. Daar is nog geen eksperimentele bewyse van sphalerons waargeneem teen lae energievlakke nie, hoewel hulle glo gereeld by hoë energie en temperature voorkom.

Swartgat-era Edit

Na 10 40 jaar sal swart gate die heelal oorheers. Hulle verdamp stadig via Hawking-bestraling. [5] 'n Swart gat met 'n massa van ongeveer 1 M sal oor 2 × 10 66 jaar verdwyn. Aangesien die leeftyd van 'n swart gat eweredig is aan die kubus van sy massa, neem massiewe swart gate langer om te verval. 'N Supermassiewe swart gat met 'n massa van 10 11 (100 miljard) M verdamp in ongeveer 2 × 10 99 jaar. [45]

Daar word voorspel dat die grootste swart gate in die heelal sal groei. Groter swart gate tot 10 14 (100 triljoen) M kan ontstaan ​​tydens die ineenstorting van superklusters van sterrestelsels. Selfs hierdie verdamp oor 'n tydskaal van 10 106 [46] tot 10 108 jaar.

Hawking-straling het 'n termiese spektrum. Gedurende die grootste deel van die leeftyd van 'n swart gat het die bestraling 'n lae temperatuur en is dit hoofsaaklik in die vorm van massalose deeltjies soos fotone en hipotetiese swaarte. Namate die massa van die swart gat afneem, neem die temperatuur toe en word dit vergelykbaar met die son teen die tyd dat die massa van die swart gat afgeneem het tot 10 19 kilogram. Die gat bied dan 'n tydelike bron van lig tydens die algemene donkerte van die Swartgat-era. Gedurende die laaste stadiums van die verdamping sal 'n swart gat nie net massalose deeltjies uitstraal nie, maar ook swaarder deeltjies, soos elektrone, positrone, protone en antiprotone. [14]

Donker era en foton ouderdom wysig

Nadat al die swart gate verdamp het (en al die gewone materiaal wat van protone gemaak is, gedisintegreer het, as protone onstabiel is), sal die heelal byna leeg wees. Fotone, neutrino's, elektrone en positrone sal van plek tot plek vlieg en mekaar amper nie teëkom nie. Swaartekragtig sal die heelal oorheers word deur donker materie, elektrone en positrone (nie protone nie). [47]

In hierdie era, met slegs baie diffuse materie wat oorbly, sal die aktiwiteit in die heelal dramaties afneem (in vergelyking met vorige tydperke), met baie lae energievlakke en baie groot tydskale. Elektrone en positrone wat deur die ruimte dryf, sal mekaar teëkom en af ​​en toe positroniumatome vorm. Hierdie strukture is egter onstabiel, en hul samestellende deeltjies moet uiteindelik vernietig. Die meeste elektrone en positrone sal egter ongebonde bly. [48] ​​Ander lae-vlak vernietigingsgebeurtenisse sal ook plaasvind, al is dit baie stadig. Die heelal bereik nou 'n uiters lae-energie toestand.

As die protone nie verval nie, sal sterre-massa voorwerpe steeds swart gate word, maar stadiger. Die volgende tydlyn neem aan dat protonverval nie plaasvind nie.

& gt10 139 jaar van nou af

2018 estimate of Standard Model lifetime before collapse of a false vacuum 95% confidence interval is 10 58 to 10 241 years due in part to uncertainty about the top quark mass. [43]

Degenerate Era Edit

Matter decays into iron Edit

In 10 1500 years, cold fusion occurring via quantum tunneling should make the light nuclei in stellar-mass objects fuse into iron-56 nuclei (see isotopes of iron). Fission and alpha particle emission should make heavy nuclei also decay to iron, leaving stellar-mass objects as cold spheres of iron, called iron stars. [13] Before this happens, in some black dwarfs the process is expected to lower their Chandrasekhar limit resulting in a supernova in 10 1100 years. Non-degenerate silicon has been calculated to tunnel to iron in approximately 10 32 000 years. [49]

Black Hole Era Edit

Collapse of iron stars to black holes Edit

Quantum tunneling should also turn large objects into black holes, which (on these timescales) will instantaneously evaporate into subatomic particles. Depending on the assumptions made, the time this takes to happen can be calculated as from 10 10 26 years to 10 10 76 years. Quantum tunneling may also make iron stars collapse into neutron stars in around 10 10 76 years. [13]

Dark Era (without proton decay) Edit

With black holes evaporated, virtually no matter still exists, the universe having become an almost pure vacuum (possibly accompanied with a false vacuum). The expansion of the universe slowly cools it down to absolute zero. [ citation needed ]

It is possible that a Big Rip event may occur far off into the future. [50] [51] This singularity would take place at a finite scale factor.

If the current vacuum state is a false vacuum, the vacuum may decay into a lower-energy state. [52]

Presumably, extreme low-energy states imply that localized quantum events become major macroscopic phenomena rather than negligible microscopic events because the smallest perturbations make the biggest difference in this era, so there is no telling what may happen to space or time. It is perceived that the laws of "macro-physics" will break down, and the laws of quantum physics will prevail. [8]

The universe could possibly avoid eternal heat death through random quantum tunneling and quantum fluctuations, given the non-zero probability of producing a new Big Bang in roughly 10 10 10 56 years. [53]

Over an infinite amount of time, there could be a spontaneous entropy decrease, by a Poincaré recurrence or through thermal fluctuations (see also fluctuation theorem). [54] [55] [56]

Massive black dwarfs could also potentially explode into supernovae after up to 10 32 000 years , assuming protons do not decay. [57]

The possibilities above are based on a simple form of dark energy. However, the physics of dark energy are still a very active area of research, and the actual form of dark energy could be much more complex. For example, during inflation dark energy affected the universe very differently than it does today, so it is possible that dark energy could trigger another inflationary period in the future. Until dark energy is better understood, its possible effects are extremely difficult to predict or parametrize.


Black holes and the expanding universe

"The current estimate for average baryon density is about 10^-30 grams/cc. The mass-equivalent of photon density is about 4 orders of magnitude lower than this (therefore may be ignored). At this baryon density (assuming no dark matter), the universe would need (based on my calculations) to have a radius of approx 4 x 10^10 light years or more in order to be a black hole. The “observable” universe is I believe estimated at about 1.4 x 10^10 light years in radius? That does indeed seem very close to the size needed for being a black hole (especially when you factor in the estimate of dark matter density which may be many times more than the baryon density). But if the universe is a black hole, then how does this match up with the observation that the universe is expanding at an ever-increasing rate? Does this mean that at some time in the future the universe will stop being a black hole? Or does it just become an increasingly bigger and less dense black hole?

The critical black hole density scales (I believe) as the inverse square of the schwarzchild radius, so a doubling of radius would result in one quarter of the critical density. But for a given volume containing a fixed mass, doubling the radius would result in a drop in density to one eighth (actual density for a given mass scales as the inverse cube of the radius). Thus if the universe is today a black hole, and it continues expanding, it must (if it is finite in size) reach a point at some time in the future when it stops being a black hole.

It seems quite a coincidence that the present era corresponds to a density and size of universe which is just on the borderline of being a black hole…… go back to much earlier times (less than a billion years of age) and our universe was definitely a black hole, go forward to much later times (more than 100 billion years of age) and our universe is no longer a black hole. Is this right, or am I making some big mistakes somewhere?"

This subject seems to me not to have an immediate bearing on questions of entropy (or Omphalos cosmology, for that matter) and to deserve consideration on its own. Hence this new thread. When it comes to black holes, cosmology becomes quite "above my fireplace", and I can't be of much use.

I make only one remark: perhaps it is dangerous to mix symmetries. The metric of a black hole is spherically symmetric, and static the Robertson-Walker metric of the standard model universe depends on time and is isotropic everywhere. Could this produce strange results like those mentioned above?


Black Holes May Hide Cores of Pure Dark Energy That Keep The Universe Expanding

A fifty-year-old hypothesis predicting the existence of bodies dubbed Generic Objects of Dark Energy (GEODEs) is getting a second look in light of a proposed correction to assumptions we use to model the way our Universe expands.

If this new version of a classic cosmological model is correct, some black holes could hide cores of pure dark energy, pushing our Universe apart at the seams.

University of Hawai'i astrophysicist Kevin Croker and mathematician Joel Weiner teamed up to challenge the broadly accepted notion that when it comes to the Universe's growing waistline, its contents are largely irrelevant.

"For 80 years, we've generally operated under the assumption that the Universe, in broad strokes, was not affected by the particular details of any small region," said Croker.

"It is now clear that general relativity can observably connect collapsed stars – regions the size of Honolulu – to the behaviour of the Universe as a whole, over a thousand billion billion times larger."

Not only could this alternative interpretation of fundamental physics change how we understand the Universe's expansion, but we might need to also consider how that growth might affect compact objects like the cores of collapsing stars.

The fact that space has been steadily adding real estate for the past 13.8 billion years is by now a widely accepted feature of our Universe.

The set of equations we use to describe this expansion was first put to paper just under a century ago by the Russian physicist Alexander Friedmann. They provided a solution to Einstein's theory of general relativity that now underpins our big picture model of cosmology.

As useful as Friedmann's equations have been, they're based on the assumption that any matter floating around inside this expanding space is more or less made of the same kind of stuff, and spread out fairly evenly.

This means we tend to ignore the swirls of stars and galaxies – just like we might not include ducks in the hydrodynamics of a lake.

But Croker and Weiner wonder what might happen to space and the objects it contains if we made some reasonable changes to the assumptions that inform these equations.

The consequences aren't trivial.

According to their adjusted model, the averaged contributions of our metaphorical ducks might affect the lake's water after all.

What's more, the lake's expansion would also affect how the ducks swim, causing them to lose or gain energy depending on their species.

Theoretically, this interpretation would mean we need to take the Universe's growth into account when describing certain phenomena, such as the death of a star.

In 1966, a Russian physicist named Erast Gliner considered how some densities of space close to the Big Bang might look – in terms of relativity – like a vacuum that could counter the effects of gravity.

His solution would look like a black hole from the outside. But inside would be a bubble of energy shoving against the surrounding Universe.

Half a century later, astrophysicists are on the hunt for just such a pushing power that might be responsible for the Universe's expansion picking up speed over time.

Today we refer to this undescribed force as dark energy, but could Gliner's pockets of relativistic nothingness be the source of our Universe's accelerating expansion?

Based on Croker and Weiner's work, if just a few ancient stars were to have collapsed into Gliner's GEODEs instead of the more typical puckered space of a singularity, their average effect on expanding space would look just like dark energy.

The pair go further, applying their corrected model to the first observation of gravitational waves from a black hole collision as measured by LIGO.

To make the math fit, it's assumed the stars that formed the merging black holes formed in a low-metallicity environment, which makes them somewhat rare.

Technically, the energy of a GEODE should evolve as the Universe grows, effectively compacting as a cosmological equivalent of a 'blueshift'.

If the merging black holes were GEODEs, according to the researchers, there'd be no need to assume the black holes were born in an unusual patch of space.

"What we have shown is that if GEODEs do exist, then they can easily give rise to observed phenomena that presently lack convincing explanations," the researchers said.

"We anticipate numerous other observational consequences of a GEODE scenario, including many ways to exclude it. We've barely begun to scratch the surface."

Testing assumptions like these is a vital part of physics. We're a long way off including GEODEs in any official astrophysical zoo of weird objects, but it's possible these could be the dark hearts of the Universe we've been looking for.


Sterrekunde-prentjie van die dag

Ontdek die kosmos! Elke dag word 'n ander beeld of foto van ons boeiende heelal aangebied, asook 'n kort uiteensetting wat deur 'n professionele sterrekundige geskryf is.

2021 April 16
The Doubly Warped World of Binary Black Holes
Scientific Visualization Credit: NASA, Goddard Space Flight Center, Jeremy Schnittman and Brian P. Powell - Text: Francis Reddy

Verduideliking: Light rays from accretion disks around a pair of orbiting supermassive black holes make their way through the warped space-time produced by extreme gravity in this stunning computer visualization. The simulated accretion disks have been given different false color schemes, red for the disk surrounding a 200-million-solar-mass black hole, and blue for the disk surrounding a 100-million-solar-mass black hole. That makes it easier to track the light sources, but the choice also reflects reality. Hotter gas gives off light closer to the blue end of the spectrum and material orbiting smaller black holes experiences stronger gravitational effects that produce higher temperatures. For these masses, both accretion disks would actually emit most of their light in the ultraviolet though. In the video, distorted secondary images of the blue black hole, which show the red black hole's view of its partner, can be found within the tangled skein of the red disk warped by the gravity of the blue black hole in the foreground. Because we're seeing red's view of blue while also seeing blue directly, the images allow us to see both sides of blue at the same time. Red and blue light originating from both black holes can be seen in the innermost ring of light, called the photon ring, near their event horizons. Astronomers expect that in the not-too-distant future they’ll be able to detect gravitational waves, ripples in space-time, produced when two supermassive black holes in a system much like the one simulated here spiral together and merge.


Dynamical 3-space: black holes in an expanding universe.

The motions of stars in galaxies are strongly affected by their central massive black holes, and that of galaxies in clusters are also affected by the expansion of the universe [13]. Then the need arises to analyse black holes in the expanding universe, with the view to checking if that expansion affects black hole characteristics. There is a long history of attempts to model this phenomenon analytically early attempts include the Einstein-Strauss model through embedding Schwarzschild black holes in the background (FLRW) universe [10], and also the well known McVittie solution [16]. This gradually lead to models (see [12] or [8] for overviews) which include the cosmological constant. The currently accepted work is based on theories of gravitation by Newton, and then extended by Hilbert and Einstein. The use of these models has generated many questions about observational phenomena, such as "supermassive" galactic central black holes [11], bore hole anomalies [1,23], flat spiral galaxy rotation curves [20] and cosmic filaments [24]. The "dark matter" and "dark energy" parameters introduced are required in order to fit the Friedmann universe expansion equation to the type 1a supernovae [19,22] and CMB data [14]. A more recent account of space and time [2] models time as a non-geometrical process (keeping space and time as separate phenomena), which leads to the dynamical 3-space theory. This theory is a uniquely determined generalisation of Newtonian Gravity (NG) expressed in terms of a velocity field, defined relative to observers, rather than the original gravitational acceleration field. This velocity field corresponds to a space flow, which has been detected in numerous experiments. These include gas-mode Michelson interferometer, optical fibre interferometer and coaxial cable experiments, and spacecraft Earth-flyby Doppler shift data [5]. The observational phenomena mentioned above are now gradually becoming interpreted through understanding the dynamics of space, which appears to offer an explanation for "dark matter" and "dark energy" effects [6,7]. A brief introduction to the dynamical 3-space theory along with experimental and observational tests is given in Sections 2-5. In Sections 6 and 7 we report the discovery of exact black hole solutions embedded in an expanding universe, and discuss the nature of their evolution over time, suggesting that primordial black holes develop linking filaments, which in turn form a cosmic network with bubble structures.

Process Physics [2] is a theory of reality which models time as a non-geometric process, with space-geometry and quantum physics being emergent and unified phenomena. The emergent geometry is thought of as a structured quantum-foam "space" and is found to be dynamic and fractal in nature, with its 3 dimensionality only approximate at micro scales. If nontrivial topological aspects of the quantum foam are ignored, it may be coarse-grain embedded in a 3-dimensional geometrical manifold. This embedding ultimately allows us to describe the dynamics of the quantum foam, or space, using a classical velocity field u(r, t), relative to an observer with coordinate system r and t [6], and here assuming zero vorticity, [nabla] x u = 0:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1)

where [rho] = [rho](r, t) is the usual matter density. *

The first term involves the Euler constituent acceleration, while the [alpha]- and [delta]- terms contain higher order derivative terms and describe the self interaction of space at different scales. Laboratory, geophysical and astronomical data suggest that [alpha] is the fine structure constant [approximately equal to] 1/137, while [delta] appears to be a very small but non-zero Planck-like length. The emergence of gravity arises from the unique coupling of quantum theory to the 3-space [3], which determines the "gravitational" acceleration of quantum matter as a quantum wave refraction effect,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2)

where [u.sub.R] = [u.sub.0] - u is the velocity of matter relative to the local space. The first two terms are the Euler space acceleration, the second term explains the Lense-Thirring effect when the vorticity is non-zero, and the last term explains the precession of planetary orbits.

Neglecting relativistic effects (1) and (2) give

[nabla] - g = -4[pi]G[rho] - 4[pi]G[[rho].sub.DM], (3)

[[rho].sub.DM](r, t) [equivalent to] [5[alpha]/16[pi]G] ([(trD).sup.2] - tr([D.sup.2])) + + [[[delta].sup.2]/32[pi]G] [[nabla].sup.2] ([(trD).sup.2] - tr([D.sup.2])). (4)

This is Newtonian gravity, but with the extra dynamical term which has been used to define an effective 'dark matter' density. Here [[rho].sub.DM] is purely a space/quantum foam self interaction effect, and is the matter density needed within Newtonian gravity to explain dynamical effects caused by the [alpha] and [delta] effects in (1). This effect has been shown to offer an explanation for the 'dark matter' effect in spiral galaxies, anomalies in laboratory G measurements, bore hole g anomalies, and the systematics of galactic black hole masses, as noted below. When [alpha] = 0 and [delta] = 0, (3) reduces to Newtonian gravity. The [alpha]-term has the same order derivatives as the Euler term, and so cannot be neglected a priori. It was, however, missed by Newton as its consequences are not easily observable in the solar system, because of the low mass of planets relative to the massive sun. However in galaxies this term plays a major role, and the Milky Way black hole data has given evidence for that term and as well for the next higher order derivative terms.

The spatial dynamics is non-local and instantaneous, which points to the universe being highly connected, consistent with the deeper pre-space process physics. Historically this was first noticed by Newton who called it action-at-a-distance. To see this, (1) can be written as a non-linear integro-differential equation

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (5)

This shows a high degree of non-locality and non-linearity, and in particular that the behaviour of both [[rho].sup.DM] and [rho] manifest at a distance irrespective of the dynamics of the intervening space. This non-local behaviour is analogous to that in quantum systems and may offer a resolution to the horizon problem.

3 Evidence for the [alpha]- and [delta]-dynamical terms

3.1 [delta] = 0 - early studies of dynamical 3-Space

It has been shown that dynamical 3-space flows into matter [3]. External to a spherically symmetric matter density [rho](r), (1) has a time-independent radial inflow solution u(r)

1/[r.sup.2] leading to the matter inward acceleration g(r) - 1/[r.sup.2]. This happens because the [alpha]- and [delta]-dynamical terms are identically zero for this inflow speed, and explains why these significant terms were missed by Newton in explaining Kepler's Planetary Laws. However, inside a spherically symmetric mass, and in other circumstances, these terms play a significant dynamical role. Inside a spherically symmetric mass, such as the earth, Newtonian gravity and the new dynamics predict different matter accelerations,

[DELTA]g = [g.sub.NG](d) - g(d) = 20[pi][alpha]G[rho]d + O([[alpha].sup.2]) (6)

where d < 0 is the depth. The Greenland [1] (see Fig. 1) and Nevada bore hole data [23], reveal that [alpha] [approximately equal to] 1/137, the fine structure constant known from quantum theory. This suggests we are seeing a unification of gravity and the quantum theory.

In conventional theory black holes are required to have enormous quantities of actual in-fallen matter compressed into essentially a point-like region. Their g

1/[r.sup.2] gravitational acceleration field is unable to explain flat spiral galaxy rotation curves, resulting in the invention of 'dark matter'. Dynamical 3-space theory however also predicts black holes in the absence of in-fallen matter, which produce a stronger acceleration field g

1/r, as discussed below. They are spherically symmetric in-flows of space, with space not being conserved. In the absence of matter, [rho] = 0, we set (r, t) = u(r)[??]. Previous work considered solutions of (1) when [delta] = 0, where the black hole solutions were found to have the form

where [beta] is an arbitrary parameter for the strength of the black hole. (1) also has straight-line filament solutions, with the form, when [delta] = 0,

where r is the perpendicular distance from the filament and [mu] is the arbitrary filament strength. The solutions (7) and (8) contain a singularity at r = 0 where the in-flow speed becomes infinite. Asymptotically, even when [rho] [not equal to] 0, these black hole solutions predict flat spiral galaxy rotation curves, for the inflow in (7) gives g(r) = -5[alpha][[beta].sup.2]/2[r.sup.1+5[alpha]]

-1/r, giving the circular orbit speed [u.sub.0](r) = [(10 [alpha][[beta].sup.2]).sup.1/2]/2[r.sup.5[alpha]/2], and illustrated in Fig. 2. This suggests that the 'dark matter' effect is caused by the [alpha]-dynamical term, a space self-interaction.

The Maxwell EM equations take account of the 3-space dynamics by making the change [partial derivative]/[partial derivative]t [right arrow] [partial derivative]/[partial derivative]t + u x [nabla]. Then we obtain strong galactic light bending and lensing caused by the inflow speed in (7), or the solar light bending when u

1/[r.sup.2]. There are also recent direct experimental detections of the space flow velocity field by [5].

3.2 [delta] [not equal to] 0--black holes and filaments

More recently the [delta] [not equal to] 0 scenario was considered. The form of (1) is expected as a semi-classical derivative expansion of an underlying quantum theory, where higher order derivatives are indicative of shorter length-scale physics. (1) when [rho] = 0 has exact two-parameter, [u.sub.0] and [kappa] [greater than or equal to] 1, black hole solutions

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (9)

where [sub.1][F.sub.1] [a, b, w] is the confluent hypergeometric function. The parameters [u.sub.0] and [kappa] set the strength and structure of the black hole, as discussed in [6]. (9) is a generalisation of (7), and for r [much greater than] [delta] gives

u[(r).sup.2] [approximately equal to] A [[delta]/r] + B [([delta]/r).sup.5[alpha]] (10)

giving, from (2), g(r) = GM(r)/[r.sup.2], where M(r) defines an "effective mass" contained within radius r, but which does not entail any actually matter,

M(r) = [M.sub.0] + [M.sub.0] [(r/[r.sub.s]).sup.1-5[alpha]] (11)

and [r.sub.s] is the distance where M([r.sub.s]) = 2[M.sub.0]. This is shown in Fig. 3 for the Milky Way SgrA * black hole. At large r the in-flow speed becomes very slowly changing, thus predicting flat rotation curves given by [6]

[u.sub.orb][(r).sup.2] = [GM.sub.0] [([r.sub.s]/r).sup.5[alpha]] [1/[r.sub.s]]. (12)

Fig. 4 illustrates that for globular clusters and spherical galaxies the observational data implies the relationship [M.sub.BH] = [[alpha]/2] M. Again we see that the [alpha]-term dynamics appear to be the cause of this result, although this has yet to be derived from (1). Exact filament solutions for (1) also exist when [delta] [not equal to] 0, as a generalisation of (8):

u[(r).sup.2] = [u.sup.2.sub.0] [[r.sup.2]/[[delta].sup.2]] [sub.1][F.sub.1] [absolute value of 1 + [5[alpha]/4], 2, -[[r.sup.2]/2[[delta].sup.2]]. (13)

Here r is the distance perpendicular to the axis of the filament and u(r) is the in-flow in that direction. The only known filament solution is for one that is infinitely long and straight. Both (9) and (13) are well behaved functions which converge to zero as r [right arrow] 0, i.e. the in-flow singularities are removed.

(1) contains a time dependent expanding universe solution. Substituting the Hubble form u(r, t) = H(t)r, and then H(t) = [??]/a, where a(t) is the universe scale factor and [??](t) [equivalent to] da(t)/dt, we obtain

4a[alpha] + 10[alpha][[??].sup.2] = -[16/3] [pi][Ga.sup.2][rho] (14)

which is independent of [delta]. One of the key features in (14) is that even when [rho] = 0, i.e. no matter, and [alpha] = 0, [??](t) = 0 and a(t) = t/[t.sub.0], and the universe is uniformly increasing in scale. Here a([t.sub.0]) = 1 and [t.sub.0] is the current age of the universe. This expansion of space is because the space itself is a dynamical system, and the (small) amount of actual baryonic matter merely slightly slows that expansion, as the matter dissipates space. Because of the small value of [alpha] = 1/137, the [alpha] term only plays a significant role in extremely early epochs, but only if the space is completely homogeneous. In the limit [rho] [right arrow] 0 we obtain the solution to (14)

which, as also reasoned by [17], predicts the emergence of a uniformly expanding universe after neglecting the [alpha] term. This allows a fit to the type 1a supernovae magnitude-redshift data (Fig. 5), as discussed in [7], and suggests that the dynamical 3-space theory also offers an explanation for the 'dark energy' effect. The [LAMBDA]CDM parameters [[OMEGA].sub.[LAMBDA]] = 0.73, [[OMEGA].sub.M] = 0.27, follow from either fitting to the supernovae data, or equally well, fitting to the uniformly expanding universe solution in (15) [7]. Via the dynamical 3-space solution the supernovae data gives an age for the universe of [t.sub.0] = 13.7 Gy.

5 Black hole--expanding universe 3 The Hubble solution (15) does not contain a free parameter, i.e. in the dynamical 3-space theory the universe necessarily expands, and hence it cannot be ignored when considering black holes and filaments. Since any radially flowing and time dependent u(r, t) (i.e. containing both outflows and inflows) has spherical symmetry, (1) becomes, in the absence of matter

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (16)

where u' [equivalent to] [partial derivative]u/[partial derivative]r. Now consider the black hole - expanding universe ansatz

where w(r, t) is the spherically symmetric black hole inflow. After substituting this form we obtain a time dependent equation for w(r, t). However by setting w(r, t) = R(r)/t this time dependence is resolved, and (16) now may be solved for R(r), implying that the Hubble outflow and black hole inflow are inseparable and compatible phenomena. Asymptotically, for r [much greater than] [theta], the resulting equation for R(r) has the solution

R(r) = -v/[r.sup.5[alpha]/2] and so w(r, t) = -v/[r.sup.5[alpha]/2]t (18)

which is the original black hole solution (7), but now with an inverse time dependence. (17) is for the black hole located at r = 0. For a black hole comoving with the local Hubble space flow the solution of (1) is

where r' = r - a(t)[r.sub.BH] when the observer is at r = 0, and the black hole is located at a(t)[r.sub.BH]. Macroscopic black holes are expected to form from coalescence of mini primordial black holes.

A consequence of (17) is that for any black hole there exists a critical radius [r.sub.c] where the spatial inflow into the black hole is equal and opposite to the Hubble expansion (Fig. 6) so defining a sphere of influence. Test particles placed inside [r.sub.c] are attracted to the black hole due to gravity, while those placed outside [r.sup.c], and at rest with respect to the local space, recede from it due to expansion. This critical radius is found to remain independent of time, i.e. [r.sub.c] only depends on the black hole strength v. [r.sub.c] is expected to be sufficiently large that the black hole-star distance r in a galaxy today is negligible compared to [r.sub.c], i.e. r [much less than] [r.sub.c], therefore not affecting the size of the galaxies themselves. This effect would more likely be evident at a distance which galaxies are separated by, as suggested by the galaxy cluster data in [18]. For a Hubble constant [H.sub.0] = 74 km [s.sup.-1] [Mpc.sup.-1], and using (12) for the in-flow speed, solving for [u.sub.orb]([r.sub.c]) = [H.sub.0][r.sub.c] for the Milky Way [SgrA.sup.*] black hole data (Fig. 3) yields [r.sub.c] = 1.6 Mpc. For multiple black holes in the expanding space, (1) implies a more complex time evolution.

6 Induced filaments and bubble networks

We have seen that the dynamical 3-space theory offers possible explanations for many phenomena, including that of an isolated black hole coexisting with the Hubble expansion. It also has filament solutions, in the absence of the Hubble expansion. However with multiple black holes a new feature appears to emerge, namely cosmic networks of black holes and induced filaments. First note that the black hole inflow speed in (10) is essentially very long range, resulting in the matter acceleration g(r)

-1/r, which is a key feature of these black holes, and may explain the "dark matter" effect. However this long range in-flow raises the question of how multiple black holes coexist when located within one another's sphere of influence? Fig. 7 shows the vector addition of the inflows for two black holes. This cannot be a solution of (1) as it is nonlinear and so does not have a superposition property. Whence this flow must evolve over time. Indeed the evolving flow appears to form a filament connecting the two black holes. However even then there remains a long range inflow, which would lead to further filaments connecting black holes within their range of influence. These black holes are remnants of the early formation of space, and imply that (1) will undergo a dynamical breaking of symmetry, from an essentially homogeneous and isotropic 3-space, to a network of black holes and induced filaments. Note that the matter content of the universe is very small, and does not play a key role in this structure formation. A possible dynamically stable 3-space structure is shown in Fig. 8, which entails this network forming a bubble structure with the network defining a 'surface' for the bubbles. The stability of this is suggested by noting that the Hubble expansion within the interior of each bubble is now consistent with the inflow into the black holes and filaments, and so there is no longer a dynamical clash between the long range flows. Bubble structures like these are indeed found in the universe, where galaxies are observed to be joined by filaments lying on spherical surfaces, filled with large voids [9,21].

It is clear that instead of studying black-hole only cases, we need to model astrophysical and cosmological phenomena embedded in an expanding universe. The dynamical 3-space theory naturally forces us to do this, as there is no free parameter to switch off the emergent expanding universe solution, and so must be included. It has been shown that the long range black hole solutions found previously hold while embedded in an expanding universe. It is suggested that the time dependent nature of these new solutions explains in part the observed cosmic web. It appears that the dynamics of the 3-space, in the presence of primordial black holes, essentially defects in the space emerging from the quantum foam, renders a homogeneous and isotropic universe dynamically unstable, even without the presence of matter, resulting in a spatial bubble network. The long range g

1/r of both the black holes and induced filaments will cause matter to rapidly infall and concentrate around these spatial structures, resulting in the precocious formation of galaxies.

Submitted on July 1, 2013/Accepted on July 6, 2013

[1.] Ander M.E. et al. Phys. Rev. Lett., 1989, v. 62, 985.

[2.] Cahill R. T. Process physics: from information theory to quantum space and matter. Nova Science Publishers, New York, 2005.

[3.] Cahill R. T. Dynamical Fractal 3-Space and the Generalised Schrodinger Equation: Equivalence Principle and Vorticity Effects. Progress in Physics, 2006, v. 1, 27-34.

[4.] Cahill R. T. Dynamical 3-Space: Cosmic Filaments, Sheets and Voids. Progress in Physics, 2011, v. 2, 44-51.

[5.] Cahill R. T. Characterisation of Low Frequency Gravitational Waves from Dual RF Coaxial-Cable Detector: Fractal Textured Dynamical 3Space. Progress in Physics, 2012, v. 3, 3-10.

[6.] Cahill R. T. and Kerrigan D. Dynamical Space: Supermassive Galactic Black Holes and Cosmic Filaments. Progress in Physics, 2011, v. 4, 50-64.

[7.] Cahill R. T., Rothall D. Discovery of Uniformly Expanding Universe. Progress in Physics, 2012, v. 4, 65-68.

[8.] Carr B. J. in Sanz J. L., Goicoechea L. J. (eds). Observational and Theoretical Aspects of Relativistic Astrophysics and Cosmology. World Scientific, Singapore, 1985.

[9.] De Lapparent V., Geller M. J., Huchra J. P. ApJ, 1986, v. 302, L1.

[10.] Einstein A., Straus E. G. Rev. Mod. Phys., 1945, v. 17, 120.

[11.] Ghez A.M., Klein B.L., Morris M., Becklin E.E. ApJ, 1998, v. 509, 678.

[12.] Gibbons G. W., Maeda K. Phys. Rev. Lett., 2010, v. 104, 131101.

[13.] Karachentsev D. et al. A&A, 2002, v. 383, 125.

[14.] Komatsu E. et al. ApJS, 2010, v. 192, 18.

[15.] Marconi A., Hunt L. K. ApJL, 2003, v. 589, L21.

[16.] McVittie G. C. MNRAS, 1933, v. 93, 325.

[17.] Melia F., Shevchuk A. S. H. MNRAS, 2012, v. 419, 2579.

[18.] Nandra R., Lasenby A. N., Hobson M. P. MNRAS, 2012, v. 422, 2945.

[19.] Perlmutter S., Aldering G., Goldhaber G., Knop R. A., Nugent P., Castro P. G., Deustua S., Fabbro S., Goobar A., Groom D. E., Hook I. M., Kim A. G., Kim M. Y., Lee J. C., Nunes N. J., Pain R., Pennypacker C.R., Quimby R., Lidman C., Ellis R.S., Irwin M., McMahon R.G., Ruiz-Lapuente P., Walton N., Schaefer B., Boyle B. J., Filippenko A. V., Matheson T., Fruchter A. S., Panagia N., Newberg H. J. M. and Couch W. J. Measurement of Q and A from 42 High-Redshift Supernovae. Astrophys.J., 1999, v. 517, 565-586.

[20.] Persic M., Salucci P., Stel F. MNRAS, 1996, v. 281, 27.

[21.] Ratcliffe A., Shanks T., Broadbent A., Parker Q. A., WatsonF. G., Oates A. P., Fong R., Collins C. A. MNRAS, 1996, v. 281, L47

[22.] Riess A. G., Filippenko A. V., Challis P., Clocchiattia A., Diercks A., Garnavich P. M., Gilliland R. L., Hogan C. J., Jha S., Kirshne R. P., Leibundgut B., Phillips M. M., Reiss D., Schmidt B. P., Schommer R. A., Smith R. C., Spyromilio J., Stubbs C., Suntzeff N. B. and Tonry J. Observational Evidence from Supernovae for an Accelerating Universe and Cosmological Constant. Astron.J., 1998, v. 116, 1009-1038.

[23.] Thomas J., Vogel P. Phys. Rev. Lett., 1990, v. 65, 1173.

[24.] Vachaspati T. Phys. Rev. Lett., 1986, v. 57, 1655.

David P. Rothall * and Reginald T. Cahill ([dagger])

School of Chemical and Physical Sciences (CaPS), Flinders University, SA 5042, Australia

E-mail: * [email protected] ([dagger]) [email protected]

* The [alpha] term in (1) has been changed by a factor of ten due to a numerical error found in the analysis of borehole data. All solutions are also altered by this factor.


Watch the video: 1986 Range Rover, rusty fuel tank fix, Edd Chinas Workshop Diaries (November 2022).