Sterrekunde

Hoe is valskerms op ander plekke as die aarde bruikbaar?

Hoe is valskerms op ander plekke as die aarde bruikbaar?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Marslandings, maanlandings ... Waar ek ook al 'n dokumentêr of foto's in Wikipedia sien, is daar valskerms in die landing van rovers. Elke keer as ek hulle sien, vra ek myself af: "Hoe kan dit die snelheid van rovers verminder as daar geen / dun lug is nie?" Iets moet daar wees om wrywing te skep!


Valskerms is nog nooit op die maan gebruik nie, maar dit is lewensvatbaar vir Mars omdat Mars het wel 'n atmosfeer - albiet een baie ligter as dié van die aarde. Om die rede kan valskerms nie die enigste manier wees om op Mars te vertraag nie - byvoorbeeld in die geval van die Curiosity Rover is dit die rede waarom 'n uitgebreide booster- en hyskraankombinasie gebruik is (sien figuur). 'N Ander benadering, wat die Pathfinder Rover gevolg het, was om groot lugsakke te gebruik om by die landing te bons.

Een voordeel van die gebruik van valskerms op Mars is dat dit teen hoër snelhede gebruik kan word - anders as op die Aarde, waar die swaarder atmosfeer (en dus 'n sterker sleepkrag) 'n valskerm teen vergelykbare snelhede kan versnipper.


Orion-valskermtoetse bewys die ingewikkelde stelsel vir menslike ruimtelike missies

Wanneer die NASA se Orion-ruimtetuig na die aarde se oppervlak buig tydens sy terugkeer van diep ruimtelike missies, sal die kapsel se stelsel van 11 valskerms homself in die lug vergader en die ruimtetuig vertraag van 300 km / h tot 'n relatiewe sagte 20 km / h vir spat in die Stille Oseaan span van ongeveer 10 minute. Terwyl die ruimtevaarders binne die toekomstige missies na die water neerdaal, hang hul lewens aan 'n reeks drade wat deeglik verwerk, getoets en bekragtig is om te verseker dat die valskerm-gesteunde einde van Orion-missies 'n sukses is.

Deur 'n reeks toetse in die Arizona-woestyn het die ingenieurs wat die valskerms van Orion verfyn, die pad om hulle te laat sertifiseer vir vlugte met ruimtevaarders maklik laat lyk, insluitend 'n suksesvolle kwalifikasietoets op 13 Desember wat 'n mislukkingsgeval beoordeel het waarin slegs twee van die stelsels drie oranje en wit hoofvalskerms word na verskeie ander valskerms in die stelsel gebruik om Orion te vertraag en te stabiliseer en verduur hoë aërodinamiese spanning. Maar agter die skerms werk ingenieurs hard daaraan om die stelsel te verstaan ​​en te vervolmaak wat in 'n wye verskeidenheid potensiële omgewingstoestande moet kan werk en die bemanning huis toe kan bring.

Twee vlieënde valskerms haal twee hoofskerms van die Orion-ruimtetuig tydens 'n toets op 15 Desember 2017 uit.
Krediete: Amerikaanse leër

Alhoewel Orion se valskerms vir die onopgeleide oog lyk soos dié wat tydens die Apollo-era gebruik is, kan ingenieurs nie daardie valskermstelsel net neem en opskaal om Orion se veel groter grootte te akkommodeer nie. Deur middel van toetsing en ontleding het tegnici Orion se valskerms ontwikkel om ligter, beter verstaanbaar en bekwamer te wees as dié van Apollo. NASA kon ook die stelsel aanpas namate elemente van die ruimtetuig, soos bevestigingspunte, volwasse geword het.

"Deur middel van ons toetsing het ons 'n paar bekende mislukkings aangespreek wat in komplekse valskermstelsels kan gebeur om die stelsel betroubaarder te maak," het Koki Machin, hoofingenieur vir die stelsel, gesê. 'Ons het voortgebou op die sterk fondament wat deur Apollo-ingenieurs gelê is en uitgevind hoe om die spanning op die stelsel doeltreffender te bestuur, die massa van die valskerms te verminder deur hoë-tegnologiese materiaal te gebruik, eerder as metaalkabels vir die stygers wat die valskerm heg. na die ruimtetuig, en verbeter hoe ons die valskerm in Orion verpak, sodat dit betroubaarder ontplooi word. ”

Orion se valskermstelsel is ook ongelooflik kompleks. Ongeveer 10 km Kevlar-lyne heg die ruimtetuig aan die buitenste rand van bykans 12.000 vierkante voet valskermmateriaal - meer as vier keer die gemiddelde vierkante beeldmateriaal van 'n huis - en mag nie verstrengel raak tydens ontplooiing nie. Benewens die stofskermsakke, is daar ook kanonagtige mortiere wat vuur om verskillende valskerms vry te laat. In verskeie valskerms is die versmeltings wat op spesifieke tye verbrand, wat ladings aansteek om lemme op presiese oomblikke deur koeëlvaste materiale te druk, wat die valskerms stadig oopvou om die opeenvolgende fases van die ontplooiingsreeks voort te sit. Al hierdie elemente moet ontwikkel word om betroubaar te wees vir die verskillende hoeke, windtoestande en snelhede waarin Orion kon land.

NASA toets Orion se valskerms om die stelsel te kwalifiseer vir missies saam met ruimtevaarders.
Krediete: Amerikaanse leër

Met die ontledingsmoontlikhede wat tans bestaan ​​en die historiese data wat beskikbaar is, het ingenieurs vasgestel dat ongeveer 20-25 toetse, eerder as die meer as 100 wat gedurende die Apollo-era uitgevoer is, hulle genoeg geleenthede sal gee om swakplekke in Orion se valskermstelsel te vind en maak dit reg. Na die drie oorblywende finale toetse volgende jaar, sal die stelsel gekwalifiseer word vir missies saam met ruimtevaarders.

'Daar is dinge wat ons met rekenaars kan modelleer en wat ons nie kan nie. Ons moet laasgenoemde deur middel van herhaalde stelseltoetse verifieer deur 'n toetsartikel uit 'n militêre vliegtuig van kilometers ver af te gooi en die valskerms tot hul verskillende grense te druk, 'het CJ Johnson, projekbestuurder van die valskermstelsel, gesê. "Baie subtiele veranderinge kan die prestasie van die valskerm beïnvloed en die toets wat ons doen, help ons om die wye verskeidenheid moontlike omgewings waarin die valskerms moet werk, te verreken."

Orion-valskermingenieurs het ook data en insig uit die toetse aan die NASA se Commercial Crew Program-vennote verskaf. NASA het rekenaarmodellering van die werking van die stelsel in verskillende scenario's verouder en help vennootmaatskappye om sekere elemente van valskermstelsels te verstaan, soos nate en gewrigte. In sommige gevalle het die werk van NASA genoeg inligting verskaf vir die vennote om die behoefte aan 'n paar valskermtoetse vir ontwikkeling te verminder.

"Orion se valskermstelsel is 'n uiters ligte, delikate versameling stukke wat absoluut gelyktydig moet saamwerk, anders sal dit misluk," het Machin gesê. “Dit alleen, onder al die toerusting op die bemanningsmodule, moet homself in die lug saamstel met verskillende moontlike snelhede en oriëntasies.”

Valskermtoetsing is slegs een deel van die groot werk wat regoor die land uitgevoer word en wat die mens in staat stel om verder die ruimte in te gaan as ooit tevore.


Dag 1

Die mense het in massa vergader, dit was 'n beheerde chaos. Daar het 'n laser opgeskiet vanaf die Atlantis-uitstalling. Ons het in die ry vir die busse ingeskuif, maar ons het stilgehou om 'n koffie te drink, aangesien ons sedert 22:30 van Tampa af gery het, en dit was nou omstreeks 02:30. Een van ons het 'n plek in die ry gehou terwyl die ander het die drankies gekry of die toilet getref. Hulle het ons daar gehou totdat ons die busse gelaai het.

Nadat ons die busse gelaai het, is ons in 'n groot groep. Ek moet sê met soveel mense wat daar opgedaag het, is dit met groot doeltreffendheid gedoen. Ek wens net hulle het minder bome op 'n manier of hoër staanplekke gehad, dit word mooi gepak.

Saturnus-kykarea, ja dit was 0545, en die bekendstelling is op 0705!

as 'n woord van wysheid, kom vroeg daarheen, en as u in 'n rolstoel is of saam met 'n gestremde reis, kan hulle op die sement sit. Dit is gereserveer vir gestremde persone. verwag om uitgeskop te word as jy nie & # 8217; t is nie.

Dus, terwyl u wag, het hulle dalk 'n ruimtevaarder wat hulle miskien nie het nie, afhangende van hoe groot 'n bekendstelling dit is. albei dae was daar een wat verduidelik het wat die omroeper nie geweet het nie. of binne-inligting gegee het.

Byvoorbeeld. (dit was die tweede dag.)

As u nie seker is waaroor hulle oor die lewendige klankvoer praat nie, moenie my bekommer nie, ek vergeet sy naam, en ek is skaam om dit te erken, maar hy sal alles verduidelik wat u hoor. Hy het dit 'n rukkie gedoen en hy het gesê dat hy vooraf 'n vlieënier gehad het.

Namate die tyd nader gekom het, is dit 12 minute voor die lansering. hulle het 'n & # 8220hard hou & # 8221 ingebou in die aftelling. dit is wanneer hulle die & # 8220poll & # 8221 doen of seker maak dat beide vuurpyle en kapsules of loonvrag vir die lansering gebruik word.

Soos u kan sien vir hierdie bekendstelling, het die skare in die stemming gekom! Hulle gaan dan in die telling en kom uit die ingeboude ruim om weer af te tel. Die eerste lansering is vertraag met 4 minute van die bekendstelling as gevolg van te hoë winde. Hoeveel dit ook al gesuig is, kan ons nie die vuurpyl in die toring laat waai nie, daarom het hulle perke. Dit het twee keer agtereenvolgens gebeur, en die laaste poging 45 minute voor die aanvang van 'n groot probleem het plaasgevind.

Terwyl hy daar sit en elke keer aangevul word, verloor die vuurpyl 'n bietjie brandstof terwyl dit deur die ontlugtingskleppe sit, en hulle vries. Ons praat oor brandstof wat vloeibare waterstof en vloeibare suurstof is. sleep baie koue vloeistowwe. Aangesien dit lang tydperke gesit het, het dit uiteindelik gevries en nie aangedui dat dit reg voor die lansering gesluit was nie. Kyk dat u druk tot op 'n sekere punt wil uitlaat, maar wanneer u dit wil afvuur, moet u hierdie openinge en vulstukke toemaak. Hulle kon nie goed lees dat hulle in die venster toegemaak is nie, en daarom het hulle die bekendstelling geskrop.

As baie mense nou hul kaartjie gelees het, sou hulle gesien het dat hulle net nog 'n buskaartjie moes koop as hulle sou terugkom. . . die volgende dag het baie nie teruggekeer nie.

Ons het dus middagete saam met die ruimtevaarder Jim Reilly geëet! As u die middagete saam met 'n ruimtevaarder gaan eet, beveel ek dit sterk aan. Die aandete is 'n wonderlike, banket-omgewing waar hy rondloop en met mense gesels. Sy vrou en 'n ander ruimtevaarder en sy vrou het by ons gesit. Wonderlike mense. Hy hou 'n toespraak, maar maak dit dan oop vir vrae. Moet asseblief nie vrae oor samesweringsteorie vra nie. Soveel as wat ons wil dink dat daar vreemdelinge en geheime tegnologie is, is ons net babas in die ruimteprogram. Die enigste ding wat erger is as om die vrae te vra. . . stuur u 9-jarige om hulle vir u te vra. Stop. . .net ophou. Enige manier van die aandete af!

Ontmoet en groet daarna. . .en ja, ons het ons foto's gekoop! Dankie Jim!

Ons het besluit dat ons kaartjies vir die volgende dag sou kry, alhoewel dit net 'n 40% kans was om te begin. Die kans was teen ons, waarom? Want soos ek besig was om die ontmoeting af te handel en groet. Ek het hom gevra of hy dink dit sal begin. Hy het gesê dat hierdie soort dinge gebeur as gevolg van die temperatuur van die brandstof as dit te lank sit, word dit traag van uitbreiding. Hy het gesê, & # 8220moet my nie daaraan hou nie, maar ek voel baie vol vertroue in 'n bekendstellingsweer wat dit toelaat. & # 8221


V: Is dit moontlik om vanaf 'n baan na die aarde te valskerm?

Natuurkundige: Ja en nee, maar meestal nee.

Dit is beslis moontlik om van die boonste (of byna die top) van die atmosfeer veilig na die aarde te valskerm, maar hierdie vraag gaan nie oor valskermspring vanaf ruimte dit gaan oor valskermspring van wentelbaan. 'N wentelbaan is nie net 'n kwessie van baie hoog nie, dit is meestal 'n kwessie van baie, baie vinnig.

Newton het probeer om bane te verduidelik aan die hand van 'n toenemend kragtiger kanon.

As jy iets gooi, volg dit 'n geboë pad wat uiteindelik die oppervlak van die aarde sny (dit is tegnies al 'n baan, dit word net onderbreek deur dinge in die pad). As u 'n kanon gebruik, sal die kurwe 'n bietjie reguit raak, maar dit sny steeds die oppervlak van die aarde, net verder weg. Met 'n baie, baie kragtige kanon (of meer waarskynlik: 'n vuurpyl) kan u iets so vinnig laat beweeg dat die kromme van sy val ooreenstem met die kromme van die Aarde. As dit gebeur, is die voorwerp in 'n wentelbaan om die aarde wat vir altyd herhaal.

U het dalk opgemerk dat die aarde nie vreeslik geboë is nie, so dit mag lyk asof u onmoontlik vinnig moet beweeg om dit te volg. Dit is presies die geval: bo die lug, maar naby die oppervlak van die aarde, moet u sywaarts beweeg teen ongeveer 8 km / s. Dit is meer as 23 keer vinniger as die klanksnelheid. Nie stadig nie.

A) 'n Ruimtevaarder in 'n lae Aarde-baan wat daar sal bly.
B) 'n stilstaande ruimtevaarder op dieselfde hoogte, wat oor 'n halfuur of so op die grond is (trefkrag op die grond).

Hierdie snelheid van 8 km / s stem ooreen met die laagste, stadigste baan (as u die atmosfeer tref). Enige ander baan sal u nie naby die atmosfeer bring nie, of dit sal vinniger wees (teen ongeveer 11 km / s). Omdat dit die stadigste en laagste is, is hierdie ongeveer sirkelvormige & # 8220naby aardebane & # 8221 baie gewild (dit wil sê goedkoop). Naby die aarde is dit waarskynlik wat u dink as u aan valskermspring na die aarde dink.

Bane op verskillende hoogtes. In 'n lae aarde wentelbaan is die Internasionale Ruimtestasie, die Hubble-ruimteteleskoop en die meeste kommunikasiesatelliete.

Hier kom die punt. U kan so vinnig gaan as wat u wil as u dit in die ruimte doen, maar as u u spoed in km per sekonde meet, begin lug soos beton voel (warm beton).

Die effek van lug op 'n & # 8220heat-skild & # 8221 is ontwerp om dit te hanteer (die onderkant van die Apollo 11-bemanningskapsule). 'N Sakkie vleis (soos 'n persoon in 'n ruimtepak) sal slegter vaar.

Wanneer 'n voorwerp teen baie hoë snelhede deur die lug ploeg, is dit geneig om te brand, te verpletter en te versnipper. Valskerms word gebruik vir die meeste inskrywings en herintredes, maar aanvanklik word die vertraging van die baan nie deur hittebeskermings hanteer nie, wat 'n kruising is tussen valskerms en bakstene (of 'n baksteen en 'n ander soort baksteen). Sodra genoeg van 'n vallende voorwerp en spoed deur 'n hitte-skild (gewoonlik stadiger as geluid, maar tot 'n paar keer vinniger) afgegooi is, is dit dan veilig om 'n werklike valskerm in te span.

As u (vinnig) uit die Internasionale Ruimtestasie sou spring met die doel om die atmosfeer te betree en u geut te ontplooi, sou u dit in kort volgorde ingevul kry en dan kort daarna na linte geskeur het. Soos enige ster wat val, sal u warm, dood en diep lig wees. Soos ysige meteore, sou u waarskynlik in stoom flits en lug bars voordat u die grond bereik.

Die rede waarom u nie van 'n baan af kan valskerm nie, is bloot 'n kwessie van ingenieurswese. Ons het nog nie valskerms geskep wat kan oorleef as dit ontplooi word nie, en dan behoorlik kan werk, teen snelhede bo ongeveer 2. Op weer snelhede, wat meer is as mach 23, kan valskerms nie hou nie. Dit sal egter eendag moontlik wees. Ons weet dat die betrokke versnellings oorleefbaar is, en daar blyk geen fundamentele beperkings te wees nie, ons het net beter materiale en tegnieke nodig. Vir ten minste 'n rukkie sal 'n ruimtetuig wat op sy eie kan ingaan (voordat die valskerm verander het om dit te vertraag) lekker wees.

Dit is waarskynlik redelik maklik om uit die ruimte te val. Die hoogste sprong tot dusver was vanaf 24 myl op. 'N Sprong uit die ruimte is net vier keer hoër. Jy het 'n vuurpyl nodig in plaas van 'n ballon, maar behalwe dat dit 'n lawwe ding is om te doen, is daar niks wat iemand verhinder om dit te doen nie.

11 Antwoorde op V: Is dit moontlik om vanaf 'n baan na die aarde te valskerm?

Alhoewel, kan u, waarskynlik nie net valskermspring nie, 'n verwarmde vlerkpak en helm gebruik om die atmosfeer te vertraag. As u dit reg doen, en voorheen genoeg kos gehad het om 'n aantal & # 8216 weiering van die atmosfeer te hou en weer in te duik, kan u veilig inkom.

Maak net seker dat u twee pare oondhandskoene gebruik. Nadat die eerste paar opgebrand het, kan u die ander paar na die volgende & # 8216wip & # 8217.

Verdomp, ek hou van die manier waarop jy 'n ingewikkelde vraag stel en dit in terme verduidelik, selfs wat ek kan verstaan.

Dus is die ruimtesprong wat in die eerste nuwe sterreeksreeks getoon word, nie moontlik nie?

Dit is heeltemal moontlik, solank u 'n goeie genoeg hittebeskerming op u ruimtepak het om weer toegang te oorleef wat ons beslis nie nou kan doen nie, maar vermoedelik kan gedoen word as u toevallig in die Star Trek-heelal is.

As u sê: & # 8220Ons het nog nie valskerms geskep wat kan oorleef as dit ontplooi word nie, en dan behoorlik werk, teen snelhede hoër as mach 2 & # 8221, is dit waar vir klassieke atmosferiese druk soos 1 atm, of hoe?
As ons aanneem dat ons ons valskerm net na die spring oopmaak, moet ons nie rekening hou met die feit dat die atmosfeer op 100 myl baie dunner is nie, sodat die beperkings op die valskerm (en gevolglik die verlangsaming wat veroorsaak word) stadig in werking tree as ons afneem, die spoed geleidelik verlaag totdat die klassieke spoedgrens met 'n valskerm bereik word, sodat ons nie brand of ander onaangename dinge nie? Dit sou dus alles moontlik wees om van die buitenste ruimte te valskerm?

Vra vir 'n vriend, hou op om so na my valskerm te kyk.

Dus as ons 'n variasie van die hamer- en veereksperiment op die maan gedoen het (om aan te toon dat alle voorwerpe en dieselfde val op dieselfde spoed val), kan ons beide 'n hamer en 'n veer uit die ruimtelaboratorium loslaat en albei sou brand by hertoegang. Of sou hulle?

Die massiewe hamer sal beslis 'n vinnige dalingstempo en 'n beduidende lugkompressie handhaaf, wat voor sy neus verhitting lewer. Maar sou die veer? As gevolg van die ligte massa teenoor die oppervlak, lyk dit asof die veer vinnig sal vertraag en minder verhitte kompressie sal vorm. Kan dit ten minste langer oorleef? Miskien kan 'n veer gemaak van hittebestande titaniumstok die langste van almal oorleef. Dit wil voorkom asof die veer sou swig & # 8230 anders sou ons oorstroom word met donsige, onverbrande meteoriete, of as daarvan verbrand. Hmm, miskien is ons. As dit is.

V: Is dit moontlik om vanaf 'n baan na die aarde te valskerm?
A: Ja. Maar dit is nog nie gedoen nie, en die tegnologie is nog steeds op 'n vlakke van navorsing-speelgoedstadium.

As u in 'n lae baan om die aarde is, moet u eers 'n bietjie laer word. Om effens dikker lug te gryp. U kan ook 'n sleepapparaat vir hierdie deel gebruik, want daar is nog 'n klein bietjie lug daarbo, maar dit neem tyd. Dit veroorsaak verval van die wentelbaan, word gebruik om satelliete en rommel te verwyder, en daar is voorstelle om seile by te voeg en so om dit vinniger te maak. Maar 'n deorbit verbrand dit & # 8217 is gewoonlik gedoen met behulp van 'n rugsak-grootte raket.

Dan benodig u 'n sleepapparaat wat gevorm is om baie vinnig deur baie dun lug te gaan. Dit is die maklikste om 'n vorm te beheer deur dit op te blaas. Omdat die boonste atmosfeer so dun is, benodig dit nie veel druk of sterkte nie. Daarom gebruik valskerms wispelturige ramlug, in plaas van inflasie, op lae hoogte.

Dit word opblaas-aërodinamiese vertraagder of ballute (& # 8220balloon & # 8221 + & # 8220parachute & # 8221) en opblaas-aeroshells genoem. Namate die sleepapparaat groter word, word die termiese belasting kleiner, sonder om die maksimum versnelling te veel te verander. Dus kan u 'n groot koel ballon (gebougrootte) of agter 'n kleiner warmer onderstebo sambreel insleep of sit. Daar is ook voorstelle gemaak en gepoog om verskillende gevormde vlerke te gebruik.

Dit raak van u wentelsnelheid ontslae. Dan doen jy die ekwivalent van 'n groot ballonprong. En daar is jy, voete in modder.

Die tradisionele klein stomp, stewige aeroshells met 'n hitte-skild, is 'n volwasse en betroubare tegnologie. Dus het ballute en opblaas aeroshells nie baie belegging gekry nie. 'N Paar dekades se navorsingstoetse, waarvan die meeste op verskillende maniere misluk. Hulle sal benodig word vir hipotetiese toetreding van groter as kapsule-vrag, maar dit is 'n paar jaar weg. Vir nou is hul ontwikkeling volgens die gewone plan vir die afwerking van die gletser van meer dekades. Hul eerste werklike gebruik kan wees om cubesats te herstel. En Kerbal-ruimteprogram.

A Survey of Ballute Technology for Aerocapture (2005) https://solarsystem.nasa.gov/docs/54_rohrschneider.ppt.pdf
A Historical Review of Inflatable Aerodynamic Decelerator Technology Development (2010) http://soliton.ae.gatech.edu/labs/ssdl/papers/conferencePapers/IEEE-2010-1276.pdf

Dit was 'n prettige navorsingsvraag & # 8212 dankie!

Aangesien 'n mens in 'n ruimtepak baie ligter is as 'n Apollo-kapsule, sou 'n baie kleiner hitte-skild nie nodig wees nie? Vanweë die wisselende warm lug wat deur die vensters van die ruimtetuig beweeg terwyl dit vlieg, is 'n traankapsule nodig, met 'n suurstoftoevoer, aangesien die ruimtetuigvoorraad beperk is. In plaas daarvan om die kapsule te probeer verlaat as die spoed afgeneem het, kan die ruimtevaarder dit afry, maar dan is groter valskerms nodig, maar valskerms is redelik goedkoop. Miskien moet sommige van hierdie kapsules vir 2 persone en toegerus met klein vuurpylmotors om die atmosfeer te bereik, aan die ISS geheg word vir noodontruiming. Hulle het geen interne toerusting nodig nie, behalwe die suurstof en die valskerm-meganisme

Stadigste, laagste baan ?? Hoe laer jy is, hoe vinniger is die baan & # 8230, tensy dit 'n elliptiese baan is en jy praat oor die spoed by die perigee.

Die fisikus sê:

@Zapp
Jy is presies reg. Ek het bedoel om te spesifiseer & # 8220wanneer u die atmosfeer tref & # 8221 (dit is reggestel). Op 'n hoër of meer elliptiese baan beweeg u vinniger teen perigee.

Wat van 'n geosinchrone baan? Sou dit nie dieselfde wees as die sprong van die ballonne af nie?

Laat 'n antwoord Kanseleer antwoord

Stuur u vrae oor wiskunde, fisika of enigiets anders waaraan u kan dink:

Daar's 'n boek! Dit is 'n versameling van meer as vyftig van my gunsteling artikels, hersien en opgedateer. Dit is interessant. Dis goed. U moet dit koop. Klik op die foto vir 'n skakel na die Amazon-bladsy, of hierdie skakel vir die e-boek.


Inhoud

Die eerste valskermsprong in die geskiedenis is gemaak deur André-Jacques Garnerin, die uitvinder van die valskerm, op 22 Oktober 1797. Garnerin het sy kontras getoets deur van 'n waterstofballon 980 meter bo Parys te spring. Garnerin se valskerm het egter min ooreenkomste met die valskerms van vandag, aangesien dit nie in 'n houer gepak is nie en nie 'n ripcord bevat nie. [1] Die eerste opsetlike vryval-sprong met 'n ontplooiing deur ripcord word eers meer as 'n eeu later deur Leslie Irvin in 1919 gedoen. [2] Terwyl Georgia Broadwick in 1914 vroeër vryval gemaak het toe haar statiese lyn verstrengel geraak het met haar springvliegtuig se stertversameling was haar vryval-afkoms nie beplan nie. Broadwick het haar statiese lyn geknip en haar valskerm handmatig ingespan, net om haar te bevry van die vliegtuig waaraan sy verstrengel geraak het. [3]

Die weermag het valskermspring ontwikkel as 'n manier om lugbemanningslede te red van noodgevalle aan boord van ballonne [4] en vliegtuie tydens vlug, en later as 'n manier om soldate na die slagveld af te lewer. Kompetisies dateer uit die dertigerjare, en dit word 'n internasionale sport in 1952. [ hoe? ] [5]

In die Tweede Wêreldoorlog het duisende vegters dwarsoor die wêreld ervaar om 'n vliegtuig te verlaat en na die grond te valskerm, hetsy soos 'n valskermsoldaat in 'n geveg val, of as 'n vliegpersoneel uit 'n verlamde vliegtuig ontsnap. Sommige dienspligtiges het agtergekom dat dit aangenaam was en het na die einde van die oorlog aanhou spring. Die National Parachute Jumpers and Riggers is in 1947 gebore. [6] Hierdie groep sou later die Parachute Club of America word, [7] en uiteindelik sy huidige herhaling: die USPA (United States Parachute Association). Die valskermspring as 'n sport het die internasionale gemeenskap begin deurdring. [8]

In die 1970's het sport-valskermspring baie gewild geword danksy 'n vinnige vrylatingstelsel van die hoofvalskerm gebaseer op die drie ringe of ringe, ontwerp deur ingenieur Bill Booth, wat dit vir almal moontlik gemaak het om dit te gebruik. [9]

In 2021 is 'n supersoniese valskerm ingespan om 'n loonvrag op Mars te land. [10]

Valskermspring word uitgevoer as 'n ontspanningsaktiwiteit en 'n mededingende sport. Dit word algemeen beskou as 'n ekstreme sport as gevolg van die risiko's daaraan verbonde. In 2018 was daar 3,3 miljoen spronge in die VSA. [11] Moderne militêre soldate gebruik valskermspring vir die ontplooiing van lugmagte en voorrade. Spesiale operasionele magte gebruik gewoonlik valskermspring, veral valskermspring, as 'n metode om in te voeg. Soms gebruik bosbrandweermanne, bekend as 'smokejumpers' in die Verenigde State, valskermspring as 'n manier om vinnig naby bosbrande in veral afgeleë of andersins ontoeganklike gebiede in te steek.

Die gebruik van 'n vliegtuig handmatig en valskermspring na veiligheid word alom gebruik deur vlieëniers (veral militêre vlieëniers en lugbemanning) en passasiers om uit 'n vliegtuig te ontsnap wat andersins nie veilig kon land nie. Alhoewel hierdie ontsnappingsmetode in die moderne tyd relatief skaars is, is dit soms in die Eerste Wêreldoorlog deur Duitse militêre vlieëniers gebruik, en is dit gedurende die lugoorloë van die Tweede Wêreldoorlog op groot skaal gebruik. In moderne tye is die algemeenste manier om uit 'n vliegtuig in nood te ontsnap via 'n uitwerpstoel. Die stelsel word gewoonlik deur die vlieënier, lugbemanningslid of passasier bestuur deur 'n aktiveringstoestel handmatig in te skakel. In die meeste ontwerpe sal dit daartoe lei dat die sitplek uit en weg van die vliegtuig gedryf word, wat die insittende meevoer deur middel van 'n plofbare lading of 'n vuurpylaandrywingstelsel. Sodra die vliegtuig vry is, sal die uitwerpstoel 'n valskerm in gebruik neem, hoewel sommige ouer modelle hierdie stap toevertrou het om handmatig deur die sitplek te aktiveer.

In die VSA gedurende die 1970's was die sport gemiddeld 42,5 sterftes per jaar. In die 1980's het die gemiddelde gedaal tot 34,1, en in die 1990's het die gemiddelde afgeneem tot 32,3 sterftes per jaar. Tussen 2000 en 2009 het die gemiddelde gedaal tot 25,8 en gedurende die agt jaar na 2009 het die jaarlikse gemiddelde afgeneem tot 22,4 sterftes (ongeveer 7,5 sterftes per een miljoen sprong). In 2017 het lede van een organisasie, die United States Parachute Association (USPA), 2 585 valskermspringbeserings aangemeld wat voldoende ernstig is om na 'n mediese sorg te gaan. [12]

In die VSA en in die grootste deel van die Westerse wêreld moet valskermspringers twee valskerms dra. Die reserwe-valskerm moet periodiek deur 'n gesertifiseerde valskermrigger geïnspekteer en herverpak word (of dit nou al dan nie gebruik word) (in die VS, elke 180 dae 'n valskermrigger met 'n FAA-certificaat). Baie valskermspringers gebruik 'n outomatiese aktiveringstoestel (AAD) wat die valskerm op 'n voorafbepaalde hoogte oopmaak as dit sien dat die valskermspringer nog in vrye val is. Afhangend van die land, is AAD's dikwels verpligtend vir nuwe springers, en / of benodig vir alle springers, ongeag hul ervaringsvlak. [13] Sommige valskermspringers dra 'n visuele hoogtemeter en sommige gebruik hoorbare hoogtemeters wat op hul helms gepas is.

Beserings en dodelike sterftes onder 'n volledig funksionele valskerm vind gewoonlik plaas omdat die valskermspringer onveilige maneuvers uitgevoer het of 'n oordeelsfout gemaak het terwyl hy met hul afdak gevlieg het, wat gewoonlik 'n vinnige impak op die grond of ander gevare op die grond gehad het. [14] Een van die algemeenste bronne van besering is 'n lae draai onder 'n hoëprestasie-afdak en tydens swiep. Swooping is die gevorderde dissipline om met hoë spoed parallel met die grond te sweef tydens landing.

Veranderende windtoestande is nog 'n risikofaktor. In toestande van sterk wind en onstuimigheid gedurende warm dae, kan die valskermspringer in die diepte naby die grond vasgevang word. Skuifwinde kan landwind of windwind veroorsaak wat 'n groter potensiaal vir besering het as gevolg van die windspoed wat die landingspoed verhoog.

'N Ander risikofaktor is dié van "baldakynbotsings", of botsings tussen twee of meer valskermspringers onder volledig opgeblaasde valskerms. Luifelbotsings kan veroorsaak dat die springers se opgeblase valskerms met mekaar verstrengel word, wat dikwels lei tot 'n skielike ineenstorting (deflasie) van een of meer van die betrokke valskerms. As dit gebeur, moet die springers dikwels vinnig noodprosedures uitvoer (as daar voldoende hoogte is om dit te doen) om van hul hoofafdakke af te sny en hul reservaatafdakke te ontplooi. Afdakbotsings is veral gevaarlik as hulle op te lae hoogtes voorkom om die springers voldoende tyd te gee om hul hoofvalskerms veilig af te sit en hul reserwe-valskerms volledig in te span.

Mislukking van toerusting veroorsaak sterftes en beserings. Ongeveer een uit 750 ontplooiings van 'n hoofvalskerm lei tot 'n wanfunksie. [15] Ram-air-valskerms draai gewoonlik onbeheersd wanneer dit nie funksioneer nie, en dit moet onder die loep geneem word voordat die reserwe-valskerm in gebruik geneem word. Reserwe-valskerms word anders ingepak en ontplooi, hulle word ook konserwatiewer ontwerp en volgens meer akkurate standaarde gebou en getoets, sodat dit betroubaarder is as hoofvalskerms, maar die werklike veiligheidsvoordeel kom uit die waarskynlikheid van 'n onwaarskynlike hooffunksie vermenigvuldig met die nog minder waarskynlike waarskynlikheid van 'n reserwefunksie. Dit lewer 'n nog kleiner waarskynlikheid van 'n dubbele wanfunksie, hoewel die moontlikheid van 'n hooffunksie wat nie weggesny kan word nie, 'n reserwefout veroorsaak, 'n baie groot risiko is.

Valskermspringdissiplines soos BASE-spring of toerusting soos toerusting soos vlieguitrusting en lugbrandry het 'n hoër risikofaktor as gevolg van die laer beweeglikheid van die springer en die groter risiko vir verstrengeling. Vir hierdie rede, [ toon ] hierdie vakgebiede word gewoonlik deur ervare springers toegepas. [ aanhaling nodig ] USPA-lidafvalgebiede in die VSA en Kanada moet 'n ervare springer as 'n "veiligheidsbeampte" laat optree (in Kanada DSO - Drop Zone Safety Officer in die Amerikaanse S & ampTA - Veiligheids- en opleidingsadviseur) wat verantwoordelik is vir die hantering van springers wat reëls, regulasies oortree of anders optree op 'n manier wat deur die aangewese persoon as onveilig beskou word.

In baie lande vereis die plaaslike regulasies of die versigtigheidsbewustheid van die drop zone-eienaars dat valskermspringers die ouderdom van meerderheid moes bereik het voordat hulle aan die sport deelgeneem het.

Die eerste valskermspring wat sonder valskerm uitgevoer is, was op 23 Mei 2012 deur die stuntman Gary Connery op 732 m. [16]

Mees algemene beserings

As gevolg van die gevaarlike val van valskermspring, word voorsorgmaatreëls getref om valskermbeserings en dood te vermy. Vir die eerste keer wat solo-valskermspringers behels, hou dit 4 tot 8 uur grondonderrig in. [17] Aangesien die meeste van die valskermbeserings by die landing voorkom (ongeveer 85%), [18] is die grootste klem binne die opleiding van grond meestal op die regte valskermlandingsval (PLF), wat die liggaam wil oriënteer om eweredig te versprei die impak deur buiging van verskeie groot, isolerende spiere (soos die mediale gastrocnemius, tibialis anterior, rectus femoris, vastus medialis, biceps femoris en semitendinosus), [19] in teenstelling met individuele bene, senings en ligamente wat breek en skeur baie makliker.

Valskermspringers, veral diegene wat met kleiner sportafdakke vlieg, land dikwels met gevaarlike hoeveelhede kinetiese energie, en om hierdie rede is onbehoorlike landings die oorsaak van meer as 30% van alle valskermsprings-verwante beserings en sterftes. [18] Dikwels word beserings opgedoen tydens valskerm landing wanneer 'n enkele uitgestrekte ledemaat, soos 'n hand of voet, afsonderlik van die res van die liggaam verleng word, wat veroorsaak dat dit kragte wat buite verhouding is tot die ondersteuningstrukture binne handhaaf. Hierdie neiging word in die meegaande tabel getoon, wat die aansienlik hoër persentasie pols- en enkelbeserings onder die 186 beseerdes in 'n 110.000 valskermsprongstudie toon.

Vanweë die moontlikheid van frakture (wat gereeld op die tibia en die enkelsiekte voorkom), word aanbeveel dat valskermspringers ondersteunende skoene dra. [18] Supportive footwear prevents inward and outward ankle rolling, allowing the PLF to safely transfer impact energy through the true ankle joint, and dissipate it via the medial gastrocnemius and tibialis anterior muscles.

Weather Edit

Parachuting in poor weather, especially with thunderstorms, high winds, and dust devils can be a more dangerous activity. Reputable drop zones will suspend normal operations during inclement weather. In the United States, the USPA's Basic Safety Requirements prohibit solo student skydivers from jumping in winds exceeding 14 mph while using ram-air equipment. However, maximum ground winds are unlimited for licensed skydivers. [20]

Visibility Edit

As parachuting is an aviation activity under the visual flight rules, [21] it is generally illegal to jump in or through clouds, according to the relevant rules governing the airspace, such as FAR105 [22] in the US or Faldskærmsbestemmelser (Parachuting Ordinances) [23] in Denmark. Jumpers and pilots of the dropping aircraft similarly bear responsibility of following the other VFR elements, [21] in particular ensuring that the air traffic at the moment of jump does not create a hazard.

Canopy collisions Edit

A collision with another canopy is a statistical hazard, and may be avoided by observing simple principles, including knowing upper wind speeds, the number of party members and exit groups, and having sufficient exit separation between jumpers. [24] In 2013, 17% of all skydiving fatalities in the United States resulted from mid-air collisions. [25]

Skydiving can be practised without jumping. Vertical wind tunnels are used to practise for free fall ("indoor skydiving" or "bodyflight"), while virtual reality parachute simulators are used to practise parachute control.

Beginning skydivers seeking training have the following options:

At a sport skydiver's deployment altitude, the individual manually deploys a small pilot-chute which acts as a drogue, catching air and pulling out the main parachute or the main canopy. There are two principal systems in use: the "throw-out", where the skydiver pulls a toggle attached to the top of the pilot-chute stowed in a small pocket outside the main container: and the "pull-out", where the skydiver pulls a small pad attached to the pilot-chute which is stowed inside the container.

Throw-out pilot-chute pouches are usually positioned at the bottom of the container – the B.O.C. deployment system – but older harnesses often have leg-mounted pouches. The latter are safe for flat-flying, but often unsuitable for freestyle or head-down flying.

In a typical civilian sport parachute system, the pilot-chute is connected to a line known as the "bridle", which in turn is attached to a small deployment bag that contains the folded parachute and the canopy suspension lines, which are stowed with rubber bands. At the bottom of the container that holds the deployment bag is a closing loop which, during packing, is fed through the grommets of the four flaps that are used to close the container. At that point, a curved pin that is attached to the bridle is inserted through the closing loop. The next step involves folding the pilot-chute and placing it in a pouch (e.g., B.O.C pouch).

Activation begins when the pilot-chute is thrown out. It inflates and creates drag, pulling the pin out of the closing loop and allowing the pilot-chute to pull the deployment bag from the container. The parachute lines are pulled loose from the rubber bands and extend as the canopy starts to open. A rectangular piece of fabric called the "slider" (which separates the parachute lines into four main groups fed through grommets in the four respective corners of the slider) slows the opening of the parachute and works its way down until the canopy is fully open and the slider is just above the head of the skydiver. The slider slows and controls the deployment of the parachute. Without a slider, the parachute would inflate fast, potentially damaging the parachute fabric and/or suspension lines, as well as causing discomfort, injury or even death of the jumper. [26] During a normal deployment, a skydiver will generally experience a few seconds of intense deceleration, in the realm of 3 to 4 g, while the parachute slows the descent from 190 km/h (120 mph) to approximately 28 km/h (17 mph).

If a skydiver experiences a malfunction of their main parachute which they cannot correct, they pull a "cut-away" handle on the front right-hand side of their harness (on the chest) which will release the main canopy from the harness/container. Once free from the malfunctioning main canopy, the reserve canopy can be activated manually by pulling a second handle on the front left harness. Some containers are fitted with a connecting line from the main to reserve parachutes – known as a reserve static line (RSL) – which pulls open the reserve container faster than a manual release could. Whichever method is used, a spring-loaded pilot-chute then extracts the reserve parachute from the upper half of the container.

World Championships are held every two years both Indoor and Outdoor in the competition disciplines Artistic Events (Freestyle and Freefly, indoor and outdoor), Canopy Formation (outdoor only), Canopy Piloting (outdoor only), Dynamic (indoor only), Formation Skydiving (indoor and outdoor), Paraski (outdoor only), Style & Accuracy Landing (outdoor only) and Wingsuit Flying (outdoor only). Continental Championships and World Cups can be held in alternate years.

Artistic Events Edit

There are now two competitive Artistic Events, Freestyle and Freefly. Freestyle teams consist of a performer and a videographer, Freefly teams have two performers and a videographer. Skysurfing is no longer a competitive event after insufficient competitors entered in two successive World Championships. The history of these events is on this Freeflying page.

Accuracy Landing Edit

Often called "Classic accuracy", this is an individual or team contest performed under an open parachute. The aim is to touch down on a target whose center is 2 cm in diameter. The target can be a deep foam mattress or an air-filled landing pad. An electronic recording pad of 32 cm in diameter is set in the middle. It measures score in 1 cm increments up to 16 cm and displays result just after landing.

The first part of any competition takes place over 8 rounds. Then in the individual competition, after these 8 selective rounds, the top 25% jump a semi-final round. After the semi-final round, the top 50% are selected for the final round. The competitor with the lowest cumulative score is declared the winner.

Competitors jump in teams of 5 maximum, exiting the aircraft at 1,000 or 1,200 meters and opening their parachutes sequentially to allow each competitor a clear approach to the target.

This sport is unpredictable because weather conditions play a very important part. So classic accuracy requires high adaptability to aerology and excellent steering control.

It is also the most interesting discipline for spectators due to the closeness of action (a few meters) and the possibility to be practiced everywhere (sport ground, stadium, urban place. ). Today, classic accuracy is the most practiced (in competition) discipline of skydiving in the world.

Canopy Formation Edit

Previously called Canopy Relative Work, or CREW for short, is a skydive where the participants open their parachutes very quickly after leaving the aircraft with the intention of flying in close proximity to each other. The goal is to create various formations by "docking" with other parachutists on the jump. The dock is often accomplished by placing one's feet into the lines of another person's parachute. Formations require at least 2 people, but can have many more.

Due to the close proximity of the canopies, care has to be taken by all participants to ensure the safety of the jump. It is common for a CREW jumper to carry a hook knife to use in case they become entangled in another jumper's lines.

Formation skydiving Edit

Formation Skydiving (FS) was born in California, USA during the 1960s. The first documented skydiving formation occurred over Arvin, California in March 1964 when Mitch Poteet, Don Henderson, Andy Keech and Lou Paproski successfully formed a 4-man star formation, photographed by Bob Buquor. This discipline was formerly referred to in the skydiving community as Relative Work, often abbreviated to RW, Relly or Rel. [27]


Space dust particles deploy bubble parachutes on their fiery descent, scientists discover

Bubbles acting like parachutes are deployed by some cosmic dust particles on their entry into Earth's atmosphere, preventing them from burning up.

This is the conclusion of a new study carried out by a researcher from Imperial College London. Cosmic dust particles originate from events such the arrival of comets in the inner solar system and collisions between asteroids, which pulverises them into dust. Some make it through the rapid descent through Earth's atmosphere, providing microscopic records of some of the earliest events in our solar system.

The researcher found that cosmic dust particles containing water-rich minerals survive atmospheric entry more easily than water-free cosmic dust. Their calculations suggest the survival of water-rich cosmic dust is approximately double that of dry dust.

The reason why some of the water-rich particles survive the descent is because they contain clay minerals or mud, which have water trapped in them. During the decent through Earth's atmosphere, the dust turns into little droplets of molten rock, known as magma, and water inside it boils. This turns the dust into a magma foam bubble, which expands and becomes lighter and cooler, acting like a parachute.

Dr Matthew Genge, author of the paper from the Department of Earth Science and Engineering at Imperial, said: "Think of microscopic rice bubbles made of molten rock and you get the picture about what this cosmic dust looks like. The results were surprising. The sudden swelling of particles and decrease in density acts like a parachute slowing them quickly and decreasing their temperatures by 100 degrees Celsius."

As twice as many water-rich cosmic dust particles survive their decent to Earth, compared to water-free particles, it is likely that scientists have been analysing many more samples from ancient events involving water-rich asteroids, compared to events involving water-free asteroids. This may be skewing our understanding of the solar system.

In the new research, published in the journal Geophysical Research Letters, Dr Genge developed a mathematical model to understand the conditions experienced by both water-rich and water-free particles during their atmospheric entry, to see what happens when particles suddenly expand. This model was underpinned by the observations carried out by Dr Genge of cosmic dust sourced from Antarctica.

Cosmic dust particles hit the atmosphere at nearly 40,000 kilometres per hour, roughly 11 kilometres per second. They are intensely heated by collisions with molecules in the air. Many of these particles are completely destroyed by the heating process, turning into gas, which dissipates into the atmosphere.

The ones that survive the descent melt to form tiny little droplets of magma, which Dr Genge calls 'cosmic spherules' and which are the width of a human hair.

Dr Genge added: "Cosmic dust provides us with direct evidence of events that may have happened in our solar system billions of years ago. However, our study is showing us that water rich particles may be more likely to survive entry compared to dry ones. Scientists now need to take this into consideration when they are re-constructing ancient cosmic events or trying to develop a more accurate picture of the geological make-up of our solar system."

This study builds on earlier research carried out by Dr Genge. He and his team previously discovered that cosmic dust can be found in urban places such as on rooftops in major cities, and not just in isolated pristine environments such as Antarctica. The Imperial researcher also discovered that much of the cosmic dust in our solar system originates from an asteroid belt located between Jupiter and Mars.


Space Exploration

Beginning in the 1950's, Earth people started sending machines, animals, and finally humans, into space.

These countries / agencies included the following:

Vehicles that generally orbit the Earth that are designed to explore the universe:

Robert H. Goddard World's first liquid-powered rocket March 16, 1926 Liquid oxygen and gasoline 41 feet climb Traveled 184 feet in 2.5 seconds Landed in a cabbage patch


Later (more advanced) rocket. (Meanwhile in

Physicist Hermann Oberth "The Rocket into Interplanetary Space." 1923. (theories of space travel) The book inspired teenager, Wernher von Braun, . assisted Oberth in liquid-fueled rocket experiments with 15 pounds of thrust. Von Braun considered Oberth to be his mentor and more like Tsiolkovsky (a theorist) than Goddard (a practical builder). V-2 Space Age Begins

October 3, 1942 (3rd attempt) Weapon of war Height: 46 feet Fuel: Alcohol and LOX Velocity: 3500 mph Payload: 1,650 pounds Range: 200 to 250 miles September 1944, launched against England toward London but, too late to affect the outcome of the war. Scientists “Captured” January 1945 von Braun moved his team of 125

Hitler had ordered their execution to prevent their capture. On the same day that Berlin fell to the Soviets, May 2, 1945, von Braun and his rocket team crossed the American lines to safety. "Project Paperclip" instituted to find as many German rockets, scientists and engineers as possible. Enough parts found to build 100 V-2's. February of 1946, scientists moved to White Sands, New Mexico Rocket passes the Sound Barrier October 14, 1947, Muroc (today known as Edwards Air Force Base) With two broken ribs, a broom handle and shampoo on his windshield Chuck Yeager X-1 Glennis was his wife Mach 1.06 = 1125 kph

Research Moves, 1950 Rocket launches shift to the Cape Army's missile research moves from

Von Braun's team started on Redstone IRBM, Destined to launch America's

First launched from the Cape on

Living things in Space September 20, 1951 — U.S. Air Force “First animal flight near space that ended with live occupants.” Nosecone on the Aerobee rocket carried a monkey named Yorick and 11 mice 45 miles (Space is said to began at 50 miles) (This was a second attempt.) Explorer 1 January 31, 1958 America's first satellite Launched on a version of the Redstone rocket (Jupiter C) Important scientific experiment of James A. Van Allen Discovered the radiation belts around the earth. NASA from NACA July 29, 1958 President Eisenhower signed H.R. 12575, making it the National Aeronautics and Space Act of 1958 (Public Law 85-568) He said: "The present National Advisory Committee for Aeronautics (NACA) will provide the nucleus for NASA.” NACA had been around since 1915 The Pioneer Series First Launch: August 1958 First successful launch: March 1959 Pioneer 4 - Lunar Flyby Still in Solar Orbit


Pioneer 13 launched in August 1978 Able and Baker June 1959 Female rhesus monkey, Able Female squirrel monkey, Baker Aboard a Jupiter AM-18 rocket Suborbital – altitude 300 miles Speeds over 10,000 mph Weightless for nine minutes Recovered successfully Sensors that had been used to transmit vital signs data were removed in surgery. During the operation, Able died from the anesthetic. X-15 Research Rocket Plane Launched from wing of B-2 Scott Crossfield first powered

Mach 3.2 -- Joseph A. Walker on May 12, 1960 Past Mach 6 -- Major Robert M. White The final records -- 4,520 mph (mach 6.7) and 354,200 feet (67.08 miles) Several X-15 pilots got Astronaut status by flying more than 50 miles up. First time, July 17, 1962 – 300,000ft (56 mi) Begun well before Mercury and flew until Oct 24, 1968 in 199 missions X-15 Leeson Vacation - Summer 2005 Project Mercury Began on October 7, 1958 (One year and

6 manned flights from 1961 to 1963 Objectives: 1) orbit a manned spacecraft around Earth 2) investigate man's ability to function in space 3) recover both man and spacecraft safely. Three weeks after Alan Shepard's first suborbital flight, on May 5, 1961, and with only 15 minutes of U.S. space flight experience, President John F. Kennedy announced the goal of landing a man on the moon before the end of the decade. The Mercury 7 Alan Shepard Walter “Wally” Schirra John Glenn


Virgil “Gus” Gordon “Gordo” Deke Scott Grissom Cooper Slayton Carpenter Little Joe, Redstone, and Atlas

Mercury-Redstone 3 (MR-3) the first manned space flight by the United States Freedom 7 May 5, 1961 Alan B. Shepard Also flew Apollo 14

Mercury-Redstone 4. MR-4 July 21,1961 Liberty Bell 7 Virgil I. “Guss” Grissom Dies in Apollo 1 fire

Mercury-Atlas 6 MA-6 First US manned orbital flight February 20, 1962 John H. Glenn, Jr. Friendship 7 Didn't fly again until aboard the Space Shuttle as “Senator Glenn” (1996)

MA-7, May 24,1962, Astronaut M. Scott Carpenter (Aurora 7) MA-8, October 3, 1962, Astronaut Walter M. Schirra, Jr., (Sigma 7) MA-9, May 15, 1963, Astronaut L. Gordon Cooper (Faith 7) The Ranger Series Lunar Research, impact cameras

  1. 3 Jan '62 – missed
  2. 4 Apr '62 – successful impact
  3. 5 Oct '62 – flyby (not intended)
  4. 7, #8, #9 – successes

3/9 Rangers 1 & 2 Failed launches. Probes never actually used Ranger 4 First US impact on the Moon Camera failed The Mariner Series 7/10 First (2) Aug 27, '62 Venus flyby Mars (4, 6, 7, 8, 9) flyby with landers Last (10) Nov 3, '73 Mercury and Venus flyby Mariner 2 First interplanetary spacecraft Reached Venus in 1962

Ranger 7 Launch: Jul 28 '64 Impact: Jul 31 Pictures 1000X the resolution of ground-based cameras Mariner 4 Launch – Nov 28 '64 Arrived for Mars flyby – Jul 14 '65

Project Gemini Began on X manned flights from 1965 to 196X Objectives: 1) long flight duration with 2 astronauts 2) rendezvous and docking 3) EVA

Gemini III March 23, 1965 Gus Grissom

Buzz Aldrin Gemini 12, Apollo 11 Frank Borman (C) Gemini 7, Apollo 8, orbit the Moon Eugene Cernan Gemini 9, Apollo 10 moon orbit, (C) Apollo 17 Richard Gordon Gemini 11, Apollo 12 orbit the James Lovell Gemini 7, (C) Gemini 12, Apollo 8, and (C)Apollo 13 Thomas Stafford Gemini 6, (C) Gemini 9, (C) Apollo 10, (C) Apollo-Soyuz linkup flight The Surveyor Series Soft landings on the Moon 5/7 1 – Apr '66 7 – Jan '68 Lunar Orbiters 5/5 Aug '66 Aug '67

The Apollo Mission 'I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth. No single space project in this period will be more impressive to mankind or more important for the long range exploration of Space.' President John F. Kennedy, May 25, 1961

Russians had launched Sputnik in October 1957, and Yuri Gagarin had orbited on April 12, 1961. The U.S. Had JUST put Alan Shephard into space (May 5). Separate test craft (unmanned) SA-1 through SA-10 (1961- 1965) Little Joe II Tests (1964-1966) Apollo/Saturn test craft AS-201, Feb 26, 1966 AS-203, July 5, 1966 AS-202, Aug 25, 1966


APOLLO 7 (AS-205) Crew: Wally Schirra, commander Donn Eisele, command module pilot Walt Cunningham, lunar module pilot Launched: Oct. 11, 1968

Landed:Oct. 21,1968 southeast

in the Atlantic Ocean Mission: First Earth-orbit

Crew: Frank Borman, commander Jim Lovell, command module pilot Bill Anders, lunar module pilot Launched: December 21, 1968 at Kennedy Space Center Landed: December 27, 1968 Mission: First manned orbit of the moon. Command-service module only. APOLLO 9 Crew: James A. McDivitt, commander Dave Scott, command module pilot Rusty Schweickart, lunar module pilot Launched: March 3, 1969 from Kennedy Space Center Landed: March 13, 1969 east of the Bahamas Mission: First- Earth orbital mission designed to test docking procedures between the CSM and LM as well as test fly the Lunar Module in the relative safe confines of Earth orbit. APOLLO 10 Crew: Tom Stafford, commander John Young, command module pilot Gene Cernan, lunar module pilot Launched: May 18, 1969 from Kennedy Space Center Landed: May 26, 1969 Mission: First test of both command-service module and lunar module in orbit around the moon. Stafford and Cernan pilot LEM to within 50,000ft of the lunar surface. APOLLO 11 Crew: Neil Armstrong, commander Michael Collins, command module pilot Buzz Aldrin, lunar module pilot Launched: July 16, 1969 Landed: July 24, 1969 Mission: First lunar landing. Armstrong and Aldrin land in Sea of Tranquility and spend 2 hours and 31 minutes walking on the moon. Collins orbits overhead in the command module. APOLLO 12 Crew: Pete Conrad, commander Dick Gordon, CM pilot Alan Bean, LM pilot Launched: November 14, 1969 Landed: November 24, 1969 Mission: 2nd lunar landing. Conrad and Bean land in Ocean of Storms, collect rocks and retrieve parts from unmanned Surveyor spacecraft, which landed nearby in April 1967. APOLLO 13 Crew: Jim Lovell, commander Jack Swigert, command module pilot Fred Haise, lunar module pilot Launched: April 11, 1970 Landed:April 17, 1970 Mission: Third attempted lunar landing. At 55 hours, 54 minutes, and 53 seconds into the missions, a cryogenic tank explodes, causing a loss of breathable oxygen and power in the command-service module. Crew abandon ship and survive in the LEM until just a few hours before splashdown, when they return to the command module, jettison the LEM, and reenter the atmosphere. APOLLO 14 Crew: Alan Shepard, commander Stuart Roosa, command module pilot Ed Mitchell, lunar module pilot Launched: January 31, 1971 Landed: February 9, 1971 Mission: Third lunar landing. Shepard and Mitchell touch down in the Fra Mauro higlands, the intended destination of Apollo 13. APOLLO 15 Crew: Dave Scott, commander Al Worden, command module pilot Jim Irwin, lunar module pilot Launched: July 26, 1971 Splashdown: August 7, 1971 Mission: Fourth lunar landing. Scott and Irwin touch down at Hadley Rille in the Apennine Mountains. First test of the four-wheel-drive lunar roving vehicle. APOLLO 16 Crew: John Young, commander Ken Mattingly, command module pilot Charlie Duke, lunar module pilot Launched: April 16, 1972 Landed: April 27, 1972 Mission: Fifth lunar landing. Young and Duke landed in the Cayley-Descartes highlands, drive lunar roving vehicle 16.8 miles, and collect 213 pounds of lunar samples. APOLLO 17 Crew: Gene Cernan, commander Ron Evans, CM pilot Harrison Schmitt, LM pilot Launched: December 7, 1972 Landed:December 19, 1972 Mission: Sixth and last moon landing. Cernan and Schmitt touch down in the Taurus Mountains near the Littrow crater, collected 243 pounds of samples, and lift off from the lunar surface after seventy-five hours and three moonwalks. Pioneer 10 Launch: Mar '72 1st to pass through asteroid belt Jupiter flyby: Dec '73 Mission officially ended Mar '97 Has now left the solar system 7 billion miles from home Will reach Aldebaron (eye of Taurus) in 2my Farthest Earth artifact Skylab Launched unmanned May 14th, 1973 using a modified Saturn V. Three 3-man teams were launched using the smaller Saturn IB during 1973 and 1974 to dock with Skylab 1 for periods of up to 81 days. Had an airlock for EVA. “Apollo Telescope Mount” Largest piece of scientific hardware Set records for time-in-space (USA) 3 months, over 1200 orbits 1000's of experiments Mariner 10 Last in the series Launch Nov '73 First probe to use a gravity assist 10000 pics of Venus APOLLO-SOYUZ The Apollo-Soyuz Test Project was the first joint flight of the US and Soviet Space Programs. The Apollo Spacecraft and Docking Module were launched on a Saturn IB rocket. Launched: July 15, 1975 Landed:July 24, 1975 SOYUZ CREW: Alexei Leonov - Soyuz 19 Commander Valery Kubasov- Soyuz 19 Engineer APOLLO CREW: Thomas Stafford - Apollo Commander Vance Brand - Apollo Command Module Pilot Deke Slayton - Apollo Docking Module Pilot Vikings I and II Mars Orbiter/lander Launched Aug and Sep '75 Tested soil and atmosphere Voyagers I & II Launched Aug and Sep '77 V1 flew by Jupiter and Saturn V2 also flew by Uranus and Neptune Pioneer 13 Arrived at Venus Dec '78 Deployed 4 atmospheric probes Descended by parachute Proved that lower atmosphere is clear STS “Space Shuttle” Magellan May '89 Carried aboard Atlantis Used radar to map surface of venus Galileo Launch: Oct '89 Orbiter/descent probe Flew by 2 asteroids on the way to Jupiter Planned for 2 year mission (worked for 8) Found salt water below the surface of Europa Probe entered Jupiter atmosphere Dec '95 Hubble Space Telescope Launch: Apr '90 Cassini and Huygens Launch: Oct '97 Saturn Orbiter with Titan lander

Yuri's Day April 12 1961 First Man in Space April 12, 1981 First Space Shuttle Flight Yuri Alekseyevich Gagarin (March 9, 1934 – March 27, 1968) Went where no man had gone before No man knew what would be encountered 0% Guarantee that he would return A Person Wife - Valentina 2 children


Comrad Kosmonaut A Career Graduated from A.F. Acad - 1958? Colonel - 1958 Selected as Cosmonaut (TsPK-1) - 1960 Vostok 1 “Pilot” - April 12, 1961 (108minutes) Chief Cosmonaut - May 1961-1963 Deputy Director TsPK - 1963-1968 Backup for Soyuz 1 (His good friend Vladimir Komarov died in that flight) Died training in a MiG-15, March 27, 1968 A Mission Vostok Blasted off as planned (9:07am Moscow time) 18,000mph 188 miles up One Complete Orbit Braking Rockets "At 10:55 Cosmonaut Gagarin safely returned to the sacred soil of our motherland." Yuri's Night The Cruise of the Vostok A Salute.


STS-1 Young and Crippen SpaceFacts

Sputnik 1957 Boosters Then you have a R7-A

Lunik 1, 2, 3 – 1959 and 1960 Sputnik 5 with Dogs 1960 Gagarin - Vostok 1 (1961) Vostok 1 (1961)

Note covering in place before launch Venus Flyby 1961

Valentina Tereshkova Vostok 6 (1963) Vostok 1969 (1961) Konstantine Tsiolkovsky 1964 Spacewalks Alexei Leonov (Voskhod 2)

Voshkod: 2 man crews, rendesvous, spacewalks The Soyuz

Soyuz 1 Tragedy Launched April 23, 1967 at 3:35am local time. Pilot Vladimir Komarov. First night launch of a crewed vehicle. It was to dock with Soyuz 2. It is believed that the Soyuz 2 never launched because of problems with Soyuz 1 in orbit. After just over a day in orbit, Soyuz 1 successfully re-entered the atmosphere. Komarov might still have landed safely, but the main parachutes tangled after deployment. Despite problems with Soyuz, Leonid Brezhnev wanted to have a spaceflight to commemorate the 50th anniversary of the Communist revolution. The cosmonauts prepared a document listing 200 technical problems with Soyuz and gave it to people high in the communist party. A few weeks before launch, Komarov said, "If I don't make this flight, they'll send the backup pilot instead. That's (Yuri), and he'll die instead of me." Afterward, Gagarin, very upset, said, ". if I ever find out he (Brezhnev) knew about the situation and still let everything happen, then I know exactly what I'm going to do." Rumor: Gagarin did eventually catch up with Brezhnev and threw a drink in his face. Soyuz 4

A much improved Soyuz program, 18 months later Soyuz 4 & 5 (Jan 1969) The Nositel N-1 Rocket that would have sent Cosmonauts to the Moon Failures during major tests set the program back and allowed the political prize to be lost. N-1 Flight History The LK-lander

On several occasions during the 1970's, Soviets claimed they had not been part of a race for the Moon, but the N-1 tests and the Lunar Lander, tested in Earth orbit during the Kosmos 379, 398, and 434 missions of 1970 and 1971, suggest otherwise. So what were the Soviets doing during Apollo 11? Soyuz 9 (June 1970) Lunokhod 1 1971


Venera 8 1972 Space Stations Salyut 1 (April 1971) Soyuz 11 June 1971

Salyut 3 (1974) Apollo-Soyuz 1975 (Soyuz 16) Soyuz 1975 Salyut 1977 Soyuz 31 1978 Halley Project 1984 Saliout 7 as seen by STS-13 Tsiolkovsky & Sergei Korolev 1986 Mir 1987 Mir (joint-Serian mission) (1991) 1987 Phobos 1989 Buran Shuttle 1988 (Flew Once unmanned) Buran Buran Shuttle 1988 and 1991 (Flew Once 1988, unmanned) International Space Station (ISS) Zarya Module 1998

International Space Station (ISS)

ISS ISS from STS106 (2000) ISS as STS97 Departs (2000) Launching the Zvezda Module (2000) Photon Rocket Launching Soyuz to Dock with ISS (2000 & 2004)


Cosmic dust particles deploy bubble parachutes on their fiery descent, scientists discover

Credit: Imperial College London

Bubbles acting like parachutes are deployed by some cosmic dust particles on their entry into Earth's atmosphere, preventing them from burning up.

This is the conclusion of a new study carried out by a researcher from Imperial College London. Cosmic dust particles originate from events such the arrival of comets in the inner solar system and collisions between asteroids, which pulverises them into dust. Some make it through the rapid descent through Earth's atmosphere, providing microscopic records of some of the earliest events in our solar system.

The researcher found that cosmic dust particles containing water-rich minerals survive atmospheric entry more easily than water-free cosmic dust. Their calculations suggest the survival of water-rich cosmic dust is approximately double that of dry dust.

The reason why some of the water-rich particles survive the descent is because they contain clay minerals or mud, which have water trapped in them. During the decent through the Earth's atmosphere, the dust turns into little droplets of molten rock, known as magma, and water inside it boils. This turns the dust into a magma foam bubble, which expands and becomes lighter and cooler, acting like a parachute.

Dr Matthew Genge, author of the paper from the Department of Earth Science and Engineering at Imperial, said: "Think of microscopic rice bubbles made of molten rock and you get the picture about what this cosmic dust looks like. The results were surprising. The sudden swelling of particles and decrease in density acts like a parachute slowing them quickly and decreasing their temperatures by 100 degrees Celsius."

Credit: Imperial College London

As twice as many water-rich cosmic dust particles survive their decent to Earth, compared to water-free particles, it is likely that scientists have been analysing many more samples from ancient events involving water-rich asteroids, compared to events involving water-free asteroids. This may be skewing our understanding of the solar system.

In the new research, published in the journal Geophysical Research Letters, Dr Genge developed a mathematical model to understand the conditions experienced by both water-rich and water-free particles during their atmospheric entry, to see what happens when particles suddenly expand. This model was underpinned by the observations carried out by Dr Genge of cosmic dust sourced from Antarctica.

Cosmic dust particles hit the atmosphere at nearly 40,000 kilometres per hour, roughly 11 kilometres per second. They are intensely heated by collisions with molecules in the air. Many of these particles are completely destroyed by the heating process, turning into gas, which dissipates into the atmosphere.

The ones that survive the descent melt to form tiny little droplets of magma, which Dr Genge calls 'cosmic spherules' and which are the width of a human hair.

Dr Genge added: "Cosmic dust provides us with direct evidence of events that may have happened in our solar system billions of years ago. However, our study is showing us that water rich particles may be more likely to survive entry compared to dry ones. Scientists now need to take this into consideration when they are re-constructing ancient cosmic events or trying to develop a more accurate picture of the geological make-up of our solar system."

This study builds on earlier research carried out by Dr Genge. He and his team previously discovered that cosmic dust can be found in urban places such as on rooftops in major cities, and not just in isolated pristine environments such as Antarctica. The Imperial researcher also discovered that much of the cosmic dust in our solar system originates from an asteroid belt located between Jupiter and Mars.


The Candy Bomber: A Parachute Challenge for Kids

This week our activity is inspired by the middle-grade book Candy Bomber: The Story of the Berlin Airlift's "Chocolate Pilot" by Michael O. Tunnell. For a full review of the book, visit Wrapped In Foil.

In Candy Bomber, pilot Gail Halvorsen releases small parachutes over the city of West Berlin after the end of World War II. The parachutes are carrying bundles of candy for the children whose lives have been disrupted by the aftermath of the war. Eventually the candy drops are turned into an official U.S. Air Force operation and more pilots join in. It is a heartwarming tale.

The challenge of building and testing parachutes would be a fun science activity to pair with this book.

A parachute consists of some sort of light material to form the canopy and suspension lines to attach the load.

  • parachute materials, such as cloth, plastic bags, paper, etc. Handkerchiefs were used in the Candy Bomber.
  • canopy shape, such as square versus round
  • canopy size
  • length and/or number of suspension lines
  • different shapes and types of candy

Some potential factors to measure:

  • Time of descent (slower is better)
  • Accuracy of parachute flight to a target
  • Safety of load delivery (Does the candy land unharmed?)
  • Distance traveled (if testing outside under windy conditions)

You will need a launch site. We drop ours over the balcony from the second story of our house to the first floor. You might try playground equipment at a park or school that has a stable, raised platform. Keep safety in mind.

  • materials to make canopies
  • materials to make suspension lines, such as string or yarn
  • measuring tape
  • stopwatch
  • assorted candy, individual pieces of hard candy with holes in the center would be the easiest.
  • pencil and paper to record results
  • scissors
  • heavy-duty tape to attach suspension lines (optional, but may speed assembly) and to attach load

The simplest parachute to make is a square of material with strings tied to the four corners. Start with lines about 1 foot long. Tie the strings on the corners and bring the strings together at the bottom. Tie on a candy. A single hard candy with a hole in the center might be a good starting point, as long as your children are old enough.

Drop your parachute and measure one of the suggested factors. This is a great project to do with groups.

Here's a somewhat long video that shows you more details of how to make toy parachutes.

Let us know what you find out about parachutes.

Also, let us know what you think of the book.


Successful voting systems must be accurate, usable, accessible and secure

Voting systems must be accurate, usable, accessible and secure to be successful, according to a new paper from a voting behavior expert at Rice University.

"Improving Voting Systems' User-Friendliness, Reliability and Security" will appear in Behavioral Science and Policy and summarizes voting systems in the United States used throughout the past decade and outlines lessons about how to improve them. In the paper, author Mike Byrne, a professor of psychology and computer science at Rice, summarizes previous voting research that supports his argument that the following four factors are critical to the success of voting systems.

In his previous research on voting accuracy, Byrne found that voting machines fail to capture voter intent up to 4 percent of the time. He found a 1-2 percent error rate for paper ballots, a 1.5 percent error rate for direct recording electronic – DRE – machines and a 3-4 percent error rate for punch cards and lever machines. He said this is clear evidence that this issue must be addressed. Voting error rates were measured by comparing each voter's intent with the actual vote that was cast.

"The most critical measure of a voting system's usability is the system's ability to accurately capture voter intent," Byrne said. "In several elections throughout history – including the 2016 presidential election – a few percentage points made all the difference. And there have been situations – such as the 2000 presidential election – where individuals thought they were casting a vote for their desired candidate, when it fact a confusing ballot made it harder to cast the right vote."

Byrne noted that studies from other voting researchers revealed even more troubling findings about voting accuracy, which he said further underscores the importance of voting accuracy.

"The scariest thing about these numbers is that we know from other research that the DRE we measured is almost certainly better than most of the ones out there in real polling places," he said.

Usability and accessibility

Electronic voting systems have become widespread in recent years, Byrne said. While they offer many features that improve usability and accessibility, such as faster voting, push-button voting and visual and audio aids, research showed that they did not improve the voting error rate.

Approximately a half-dozen previous studies of DREs revealed an average voter error rate of 1.5 percent this indicates that they were no better than paper ballots, which have an error rate of 1-2 percent. Byrne noted that other studies not referenced in his paper have revealed even higher rates of voting errors.

Byrne said that although participants were up to 30 percent more satisfied with DREs than they were with traditional systems, the DRE system did not generate lower error rates.

"This research made it clear that there is more work to be done to both improve voting usability and accessibility while preventing errors," he said.

Security must also be considered early in the design of voting systems, but Byrne said it is important to take great care not to compromise the other important factors (usability, accessibility and accuracy) for this. Byrne said that although this is a difficult balance, getting it right is critical.

"Security is a complex problem on its own, particularly now that it involves computers computer security is a whole branch of computer science," Byrne said. "We wanted to look at the human side of that problem."

In the paper, Byrne references a specific study of voters' ability to help thwart tampering. In the study, the researchers tested whether or not voters detected malfunctioning or maliciously altered voting machine software. The purpose was to detect whether voters would notice the altered votes on the review screen. Two-thirds of voters in the study failed to notice such changes.

"Security is obviously critical—we don't want hackers or ballot-box stuffers deciding election outcomes," Byrne said. "But if what's actually on the ballots doesn't accurately reflect the will of the voters, it doesn't matter how secure the system is the election outcome can still be wrong."

Byrne said that much of the research on voting began following the 2002 Help America Vote Act, which was passed to improve voter access and voting systems. While well-intentioned, Byrne said, it inadvertently led to the purchase of systems that may have actually increased the vote error rate. He said that research on voting systems has been conducted throughout the past decade and has demonstrated that many systems are less usable and secure than they should be.

Byrne said behavioral scientists are best equipped to design voting systems because the factors that contribute to human error tend not to be well-understood by software engineers, and behavioral scientists have the necessary expertise in conducting usability tests. He noted that two collaborative efforts to build better voting machines are currently underway—the Los Angeles County California Voting Systems Assessment Project and the Travis County STAR-Vote project.

"These two jurisdictions have different constraints in terms of election law, demographics and resources," Byrne said. "However, both have brought election and voting system experts together to share their expertise, and the systems they are building share some major design features. Both will have a DRE user interface similar to the Center for Civic Design's Anywhere Ballot to support usability and accessibility, and both will produce a paper record to ensure the system is secure and auditable. Both projects are also committed to usability testing."