Sterrekunde

Is daar weerligstrale op Mars?

Is daar weerligstrale op Mars?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Alhoewel die Mars-atmosfeer dun is, is daar baie atmosferiese verskynsels wat op Mars voorkom: storms, stofduiwels, (koolstofdioksied) sneeu, ... Sommige storms wek selfs die atmosfeer van die hele planeet op!

Is daar weerlig en donderweer soos Mars-storms tydens Marsstorms? Wat van in die verlede, toe atmosferiese toestande anders was, was daar al ooit weerlig op Mars?


Terwyl dit nog nie gesien word nie, kan stofduiwels op mars ook weerlig bevat, aangesien dit elektriese velde genereer wat naby die afbraak van lug op mars ontstaan.

"Op aarde het ons met instrumente elektriese velde in die orde van 20 duisend volt per meter (20 kV / m) gemeet," sê Farrell. Dit is grondboontjies in vergelyking met die elektriese velde in landelike donderstorms, waar weerlig nie flits voordat elektriese velde 100 keer groter word nie - genoeg om lugmolekules te ioniseer (uitmekaar te breek).

Maar net 20 kV / m 'is baie naby aan die afbreek van die dun Mars-atmosfeer,' wys Farrell daarop.

Bron: https://science.nasa.gov/science-news/science-at-nasa/2005/14jul_dustdevils


Bron

Paschen se wet weerspieël die feit dat, namate die druk afneem, die gemiddelde vrye pad toeneem, wat 'n elektron toelaat om meer energie te verkry tussen die een botsing en die volgende, wat dit makliker maak om 'n ionisasie-kaskade te produseer.


Weerlig opgespoor op Mars, 2006 Met die stofstorms is dit moeilik om te glo dat u dit sou doen nie voldoende laadskeiding kry. Met slegs 'n paar hektopascale druk is donderweer moeilik om te hoor.


Weerlig is moontlik op Mars opgespoor, hoewel dit tans skaars voorkom, en pogings om die 2006-resultate te herhaal, het tot dusver misluk.

Nuwe navorsing het bevind dat die lae druk op Mars die rede kan wees waarom weerlig ongewoon is. Die atmosferiese druk op Mars blyk 'n minimum te wees om weerlig te maak, in teenstelling met net koronale ontlading. Met minder atmosferiese druk as nou, kan meer korrels op elke korrel opbou, wat 'n skielike weerlig waarskynlik sal veroorsaak. Meer druk, en daar sal meer korrels rondvlieg, wat vinniger opbou en die kans op weerlig verhoog. Dus is die kans dat 'n weerligstraal kan plaasvind, eerder as net koronale ontlading, baie laer as wat dit op die aarde is en is dit op die minimum. Dit kan verklaar waarom daar tot dusver nog net een opsporing was. Bron


Eerste direkte bewyse van weerlig op Mars opgespoor

'N Illustrasie van 'n stofstorm op Mars. Krediet: Brian Grimm en Nilton Renno

Vir die eerste keer is direkte bewyse van weerlig op Mars opgespoor, sê navorsers van die Universiteit van Michigan wat tekens van elektriese ontlading tydens stofstorms op die Rooi Planeet gevind het.

Die boute was droog weerlig, sê Chris Ruf, 'n professor in die departemente Atmosferiese, Oseaniese en Ruimtewetenskappe en Elektriese Ingenieurswese en Rekenaarwetenskappe.

"Wat ons op Mars gesien het, was 'n reeks groot en skielike elektriese ontladings wat deur 'n groot stofstorm veroorsaak is," het Ruf gesê. "Dit is duidelik dat daar geen reën gepaard gegaan het met die elektriese ontlading op Mars nie. Die geïmpliseerde moontlikhede is egter opwindend."

Elektriese aktiwiteit in Marsstofstorms het belangrike implikasies vir die Mars-wetenskap, sê die navorsers.

"Dit beïnvloed atmosferiese chemie, bewoonbaarheid en voorbereidings vir die verkenning van mense. Dit kan selfs gevolge hê vir die oorsprong van die lewe, soos voorgestel in eksperimente in die vyftigerjare," het Nilton Renno, 'n professor in die Departement Atmosferiese, Oseaan- en Ruimtewetenskappe, gesê.

Die bevindinge is gebaseer op waarnemings wat gemaak is met behulp van 'n innoverende mikrogolfdetektor wat ontwikkel is by die U-M Space Physics Research Laboratory. Die kurtosis-detektor, wat die onderskeid kan tref tussen termiese en nie-termiese straling, het tussen 22 Mei en 16 Junie 2006 vir ongeveer vyf uur per dag vir ongeveer vyf uur per dag metings van die mikrogolfvrystellings gedoen.

Op 8 Junie 2006 het 'n ongewone patroon van nie-termiese bestraling en 'n intense Mars-stofstorm voorgekom, die enigste keer dat nie-termiese bestraling opgespoor is. Nie-termiese straling dui op die weerlig van weerlig.

Die navorsers het die data nagegaan om die sterkte, duur en frekwensie van die nie-termiese aktiwiteit te bepaal, asook die moontlikheid van ander bronne. Maar elke toets het tot die gevolgtrekking gekom dat die stofstorm waarskynlik droë weerlig veroorsaak het.

Hierdie werk bevestig grondmetings van die Vikinglanders 30 jaar gelede, en dit daag 2006-eksperimente uit wat anders voorgestel het.

Gegewens van die Viking-landers het die moontlikheid laat ontstaan ​​dat Marsstofstorms elektries aktief kan wees soos die Aarde se donderstorms en dus 'n bron van reaktiewe chemie kan wees. Maar die hipotese was ontoetsbaar. In 2006, met behulp van teoretiese modellering, laboratoriumeksperimente en veldstudies op aarde, het 'n groep planetêre wetenskaplikes voorgestel dat daar geen direkte bewyse is dat weerlig op Mars plaasgevind het nie. Hierdie nuwe navorsing weerlê die bevindings.

"Mars bly ons verbaas. Elke nuwe blik op die planeet gee ons nuwe insigte," het Michael Sanders, bestuurder van die ondersoekstelsel- en tegnologiekantoor by Jet Propulsion Laboratory en navorsers wat by hierdie studie betrokke was, gesê.


Is daar weerligstrale op Mars? - Sterrekunde

In hierdie pos wil ek graag praat oor 'n vervoer wat ek tans ervaar en wat in 2018 begin het. Ek voel dat ek die afgelope twee jaar genoeg persoonlike ervaring bymekaargemaak het om met u te deel hoe Uranus my geboorteland Mars verlaat voel soos en gee u insig oor wat u kan verwag. Dit is nie 'n maklike vervoer nie en ek voel dat ek leiding moet gee vir diegene wat tans hierdie vervoer ondergaan en wonder & # 8216Wat de hel gaan aan? & # 8217 of vir diegene onder u wat hierdie vervoer in die gesig staar sodra Uranus Tweeling in 2025 tref (want bereid wees om die slag gewoonlik te versag).

Uranus neem ongeveer 84 jaar om sy draai om die son te voltooi, en as dit op sy baan volg, straal dit dikwels sy energie deur 'n bepaalde konstellasie op die aarde se ekliptiese gordel (wat bestaan ​​uit die 12 astrologiese konstellasies wat deur ons Geestelike Voorouers geïdentifiseer is). Dit beteken dat u Uranus in u leeftyd of miskien nie alles tegelykertyd deur enige van u persoonlike planete sal deurvoer nie (as u byvoorbeeld 'n stellium het). Uranus verbind miskien nie 'n persoonlike planeet nie, maar dit kan aspekte maak van u persoonlike planete (soos 'n vierkant, 'n opposisie, 'n driehoek of 'n sekstiel), wat u op 'n sekere vlak aanspoor om aandag te skenk aan die insigte wat dit lukraak in u lewe lewer .

Die buitenste planete is diegene wat beskou word as verder as wat ons normaalweg met ons oë van die aarde af kan sien. Ons persoonlike planete is dus Mercurius, Venus, Mars, Jupiter en Saturnus (met die eerbare uitsondering van die Son, wat 'n ster is), terwyl die buitenste planete Uranus, Neptunus en Pluto is. Wanneer 'n buite-planeet astrologiese tekens omskakel, vind daar gewoonlik 'n belangrike, noodlottige of karmiese massaverandering plaas. Hierdie transitte is gewoonlik geslagte, en dit vorm die struktuur van ons sosiale wêreld en hoe ons dit sien en daarmee verband hou. Toe Pluto byvoorbeeld in 2008 van Boogskutter na Steenbok oorskakel, was daar die finansiële ineenstorting van Lehman Brothers wat ekonomiese gevolge vir die hele wêreld gehad het, of toe Neptunus in 2012 van Waterman na Visse verskuif het, het 'n tien meter lange tsoenami 'n kernkragaanleg geraak. In Japan. As 'n buite-planeet nou 'n persoonlike planeet verbind, is dit normaalweg 'n hoë-orde-aktivering wat beteken dat afgeleë gebeure sal plaasvind in die huis van u kaart waar die planeet op reis is. Ek sou dus voorstel dat die dieper betekenis van daardie huis goed verslind word om gereed te wees om hierdie energie in u lewe te integreer met meer bewustheid. Ek sal my persoonlike voorbeeld gebruik vir ontleding, want dit is wat ek die beste weet.

Aangesien Uranus nader aan my geboorte Mars vertrek, aktiveer dit my persoonlike wilskrag en moed in die 7de huis (die huis wat tradisioneel regeer word deur 'n lieflike Weegskaal, die plek in ons kaart as ons saamwerk, vertel, kommunikeer, liefhet, trou of langtermynkontrakte teken). Soos u kan voorstel dat Mars in hierdie huis is, is dit nie die beste plek nie, want dit voorspel gereelde argumente en konflik met liefhebbers en sakevennote. As Uranus hierdie huis deurtrek, beteken dit ook dat ek nie kan ignoreer hoe woede 'n baie belangrike rol speel in my liefdeslewe en hoe ek ouerskap hanteer nie. Dit is omdat die 7de huis op sielvlak die huis is van onderdrukte emosies, ons onbewuste self of ons skaduweeself (daardie blindekol in ons wat wys wat ander van ons sien waarvan ons nie so bewus is nie).

Uranus bring 'n sekere chaotiese energie in 'n spesifieke huis van u grafiek in en is geneig om enige persoonlike planete te elektrifiseer. Vandat hierdie vervoer begin het, het ek voortdurend gekonfronteer met problematiese mense wat my eie tekortkominge vir myself weergee, sodat ek my skadukant kan integreer deur my foute, my beperkings, my liefdespatrone en die grense van my self in verhouding tot ander mense. Die doel is om myself meer lief te hê, my selfrespek te herwin en op 'n hoër, meer volwasse vlak in verhoudings te funksioneer. Ek is ook opgewonde om anders op te tree as in die verlede, en ek ervaar oomblikke van opgewonde en konstante energie of lae pieke in my energie wanneer ek uitstel, swak en moeg voel. Dit is omdat Uranus weerligstrale gee van geestelike bewustheid wat dan stadig op emosionele vlak verwerk word. Daardie verwerking vertraag ons op die oppervlak, maar innerlik styg ons tot hoër bewussynstoestande. As dit vreesaanjaend klink, bly by my & # 8211 Ek belowe u dat dit die moeite werd is om hierdie vreemde en lukrake proses te ondergaan om 'n vorige weergawe van u self af te breek wat u nie net help om vrede te vind en gelukkig te wees in die wêreld nie.

Bye, totsiens Stagnasie! Hallo, Ontembare energie

Uranus was die grootste deel van die Pluto in Steenbok-era in die Ram, wat 'n aantal kardinaal-kruis-oomblikke en gespanne vierkante na Pluto geskep het. Dit was 'n historiese tydperk, wat een astroloog vir wie ek lief is en bewonder, Mystic Medusa, & # 8216The Zap Zone & # 8217 & # 8211 'n tyd van groot sosiale omwentelinge regoor die wêreld en militêre opstandige opstande genoem het. In 2018 verander Uranus tekens in die Aarde en Venus-teken van die Taurus, en vir 'n rukkie was daar 'n gevoel van verhoogde stabiliteit en een wat gebreek is in 2020 toe Saturnus 'n kort rukkie in die Waterman ingegaan het en sodoende 'n ander skep. gespanne energieke aspek van geforseerde groei (en wat astroloë noem & # 8216a vierkantig & # 8217). Ons is nou in 'n omgewing waar werk en die stabiliteit of die welvaart wat dit meegebring het, herkonfigureer word, waar daar 'n gevoel van finansiële en omgewings chaos is wat ook ons ​​verhoudings met ons stabiele gevoel van self en ons gesondheid en liggaam beïnvloed hierdie gebiede word beheer deur 'n stewige en vrugbare Taurus). Die materiële realm word tans herkonfigureer deurdat ons ons eie kwesbaarheid in die gesig staar vir vinnig-muterende virusse en in 'n vinnig veranderende nuwe weer- en omgewingsklimaat leef (en of ons nou geniet van die & # 8216-rit & # 8217; of nie, ons kry die geleentheid om te gebruik ons gedagtes om oplossings te vind).

Die eerste periode van Saturnus in die Waterman wat Uranus in die Taurus kwadraat, het die begin van toesluitings in die wêreld gesien. Ek was persoonlik kreatiewer as wat ek ooit was en het my You Tube-kanaal & # 8216The Spiritual Social & # 8217 laat groei, het my oombliklik daarvan weerhou om diep vrees en ontnugtering te ervaar. Dit is omdat ek 'n gebore Venus in die Waterman het en 'n gebore Mars in die Stier (dus het die verbygaande hemelse vierkant die geboorte Yin-Yang-vierkant geaktiveer wat ek in my geboortekaart het, of beter gesê die energie wat ek sedert my geboorte in my dra). Enige vierkante wat in ons kaarte geaktiveer word, lewer baie energie wat ekstern op kreatiewe en innoverende maniere verwerk moet word. Maar die tweede keer dat Saturnus in die Waterdraer gedompel het en ook by Jupiter aangesluit het tydens die wonderlike samesmelting verlede jaar se winterstilstand (21 Desember), het ek gevoel asof my hele stabiliteit onder my voete verkrummel, en ek moes vinnig vorendag kom met 'n oorweldigende hoeveelheid oplossings. Hieronder is 'n paar van die kernkenmerke wat ek persoonlik gesien het toe Uranus 'n geboorte Mars-plasing geaktiveer het:

  1. Wanneer Uranus u Mars-plasing tref (dit hoef nie eers konjunktief te wees nie, maar net in dieselfde huis), sou ek voorstel dat u dit makliker maak en u voorberei om te laat gaan wat u volgens u skedule was. U daaglikse gewoontes sal onvermydelik verander namate u deur wisselvallige energievlakke gaan. Die een oomblik het jy die krag en moed van 'n legioen, en die volgende oomblik het jy 4 koppies koffie nodig om uit die bed te rol. Dit is 'n & # 8216-buigsaamheid & # 8217; s soort energie, waar jy skok van aksie ontvang, gevolg deur oomblikke van pasiwiteit waar jy nie veel anders as om te rus nie. Gee hierdie oomblikke 'n slim naam soos & # 8216my verhoog die verhoog & # 8217;, & # 8216Ek & # 8217; m versiering myself & # 8217;, & # 8216 vul my batterye & # 8217; of & # 8216 & # 8217; re-laai & # 8217, net om jou te help cope en om jou te laat voel dat jy nie net lui sit nie, maar eintlik jou energie insamel vir die volgende deel van die leerkurwe, en hou in gedagte dat Uranus jou op daardie steeo-leerkurwe sal hou soos jy & # 8217; re op 'n rollercoaster-rit, totdat dit daardie huis verlaat!
  2. Stel vas hoe lank die vervoer duur. Die huidige vervoer van Uranus in die Taurus het op 16 Mei 2018 begin en sal op 27 April 2026 eindig. U kan die datums van die planete maklik nagaan deur 'n Astrodienst ephemeris te raadpleeg (basies 'n kaart van die lug in 'n gegewe jaar) . Om te weet hoe lank iets duur, kan u help om te beplan, te organiseer en voor te berei. As dit 'n goeie vervoer is, kan u besluit om die rit te geniet, maar dit is 'n moeilike vervoer. As u bewus is van die vervaldatum, kan dit u help om dit te oorkom.
  3. 'N Ander ding wat help, is om uit te vind watter aspekte dit vir ander huise of planete in u kaart het. Ek is bewus daarvan dat hierdie vervoer 'n baie moeilike vierkant in my kaart (Venus-vierkant Mars) aktiveer, dus verkies ek om enkel te bly, aangesien ek baie onbewuste aggressie weer in my stelsel integreer. Die meeste sterrekundiges noem hierdie aspek & # 8216 die huishoudelike geweldmerker & # 8217; en omdat ek bewus is van hierdie potensiaal, beheer ek dit deur my woede aktief te besit, dit te erken en myself op te lei om nie daarop te reageer nie (alhoewel daar dae is dat ek op een of ander manier & # 8216kry dit & # 8217 en ander as ek dit nie regkry nie en kan uithaal). Terwyl hierdie proses ontvou, ontdek ek dat ek vol kreatiwiteit is en dat ek geïnspireer voel om baie dinge te produseer (snitte, dienste, artikels, ens.). Deur te weet dat die hoër vibrasie van Mars diep kreatiwiteit en intuïsie is, stel ek my daaglikse voornemens om eerder in hierdie rigting gelei te word as in die laer energieë van geweld en konflik.

Wisselvallige en episodiese liefde

As u Venus is (dit wil sê met planete in Weegskaal en Taurus), is hierdie vervoer dalk nie 'n lekker rit nie, want dit sal moeilik wees om te beplan of om by 'n plan te hou en dit elegant en gereed te laat lyk. En dit is ook omdat Uranus jou op 'n oervlak herorganiseer, aangesien Mars oor ons instink heers. Oor die algemeen leer Uranus emosionele afsydigheid, want dit wil hê dat jy moet let op die nuwe insigte waarmee dit jou sal seën. Maar om u te help om u energieke patroon of verhouding met u basiese instink te verander, moet u eers wys waar u verkeerd is en u energie misbruik. En dit is die nederige deel van die rit, die ongemaklike sneller wat jou druk om iets te verander. Ek het soveel oomblikke gehad om vir mense, plekke, roetines en my eie innerlike kritikus & # 8216Genoeg! & # 8217; te sê, aangesien hierdie transito begin het en op hierdie manier myself bemagtig het. Terselfdertyd het ek 'n paar brûe verbrand, daarom is ek besig om te verstaan ​​hoe ek nou verhoudings kan vorm met hierdie nuwe gevoel van selfrespek.

Aangesien u u lewe vanuit 'n splinternuwe lig sal begin analiseer, help dit as u van tyd tot tyd in stilte gaan sit om die rommelige emosies te integreer wat u duidelike insigte in hierdie tydperk oorweldig (soortgelyk aan die tydperk wanneer Uranus oor u maan beweeg, in welke geval u emosies is die sleutel toegang tot hoër bewussynstoestande).

Dus met Uranus op jou Mars & # 8211 wat jou wilskrag en lewenskrag verteenwoordig, jou energie en kreatiwiteit, jou charisma en moed & # 8211, sal jy 'n tydperk binnegaan waarin jy dae lank min of amper geen energie sal hê nie en gevolg deur 'n massiewe uitstorting van energie wat u op hoogte hou vir 'n potensiële periode van 72 uur aaneen. Uranus se elektrisiteit sal u wilskrag en energie op fantasties onvoorspelbare maniere beïnvloed, wat u deurmekaar en ongeorganiseerd laat voel. Ek sou voorstel dat u nie hierdie energie probeer beheer deur dit binne 'n 9 tot 5 styf te hou nie, want dit sal nie werk nie, en dit sal op u terugval en uiteindelik kan u selfs ontslaan word uit 'n gewone werk met streng afgebakende en stabiele parameters. Uranus wil hê dat u moet wegkom uit enige gemaksones waar u uself gewillig of onwillig in geplaas het, sodat u groot kan dink en groei tot u egtheid.

Wat is dit waarvoor jy & # 8217; t altyd lief is? Wanneer Uranus jou Mars tref en jou oerrit in klein en skokkende spore loslaat, sal jy die onvermydelike gevolg hê om jou hart te volg. Die enigste manier om hierdie energie te beheer, is deur te besluit om u eie pad te volg, alleen te gaan of 'n rukkie u ding te doen en aanvaar die sosiale afkeur of terugslag wat in u sosiale situasie kan ontstaan. sirkel. Uraanse energie wil immers hê dat u teen die status quo moet rebelleer en ou denkpatrone moet defragmenteer (gewoonlik geërf van u ouers, kulturele en godsdienstige agtergronde). U kan dus net sowel hierdie energie gee en toelaat dat dit u kreatief lei op voorheen ongetrapte nuwe lewensweë.

Geniale skokke

Eintlik, as Uranus oor jou Mars reis, skep dit 'n kragdinamo, dus is dit beter om dit te laat rol as om dit styf in jou handpalms te hou en die gevaar te hê om verbrand te word deur sy blote intensiteit. Ek het 'n Suid-knooppunt in die Weegskaal, en die grootste gebreke met hierdie plasing is 'n neiging om mense asb te neem en besluiteloos te wees, en Uranus laat my nie toe om een ​​van hierdie dinge te doen nie. Elke keer as ek in daardie gemakspatroon val, ontstaan ​​daar 'n konflik wat my leer om in my eie krag te tree en my energie te herwin. Soms ervaar ek ook hierdie kort humoristiese oomblikke wanneer dit amper asof die Goddelike inspring om iets of iemand uit my lewe te verwyder wat my skade berokken het. Die beste ding met hierdie vervoer is dat u onbewustelik tot aksie gedryf word om dinge te hanteer waarvan u voorheen nie hou nie, maar op die een of ander manier geduld het.

Uranus los die cool vegter binne. Op hierdie manier bevry Uranus jou & # 8211 dit wys jou dat jy nou moet optree, omdat daardie werk of daardie verhouding ondraaglik geword het en more nie gewaarborg word nie. Om eerlik te wees, is 'n deel van my 'n bietjie bang vir die oomblik dat Uranus 16 grade sal haal en my Mars presies sal verbind, net deur te oordeel hoe hierdie reis tot dusver verloop het. Maar my saak is moeiliker, want ek het hierdie transito oorkant my Pluto in Skerpioen in die eerste huis en vierkantig deur my Venus in die 4de huis (wat ook die volgende 2 jaar onder Saturnus se koppelaar is) & # 8230.so dit is nie juis 'n gladde wandeling in die park nie. Sommige van u het hierdie vervoer met baie trines, en ander het hierdie aspek natuurlik. Hoe hoër die getal van die graad hoe ryper die energie van 'n teken, en hoe stadiger die tempo van die karmiese lesse wat teen 'n meer hanteerbare tempo afgelewer word. Ek is nie seker wat die toekoms bring nie, maar ek kan sê dat sodra Uranus in 2026 die 29ste Taurus-treffer sou tref, die omgewings- en finansiële landskap van die kollektiewe 'n dapper nuwe wêreld sal wees, en miskien sal hierdie ewekansige energie-energie teen daardie tyd verdwyn. en ek kan op 'n meer konsekwente manier met my liefdeslewe aangaan. best Die beste deel is egter om terug te kyk na al die kreatiewe uitsette wat ek tydens hierdie vervoer tot stand gebring het en hoe vryer ek op energieke vlak sal voel. En dit is die geskenk waarmee Uranus jou agterlaat: die nivellering op 'n leeftyd!


Wel, hy * is * die god van die weerlig

Wetenskaplikes het ontdek dat groot weerligstrale voortdurend oor Jupiter knetter en dat hulle glad nie is waar u sou verwag nie. Hoe het hulle dit gedoen? Deur te luister hoe hulle elektronies fluit van duisende kilometers af met behulp van 'n ruimtetuig wat meer as 200 000 kilometer per uur verby skree.

Niks aan hierdie verhaal is cool nie.

Meer slegte sterrekunde

Eerstens, ja, daar is weerlig op Jupiter. Elke ruimtetuig wat die ginorme planeet besoek het, het dit opgespoor, hetsy deur die flitse direk aan die nagkant van Jupiter te sien, of deur radiogolwe op te spoor wat deur die weerlig uitgestraal word.

Weerlig vind plaas wanneer elektrone van hul huisatome gestroop word en op groot afstande daarvan geskei word. Op die aarde gebeur dit in onweerswolke, met warm lugstrome wat opwaarts beweeg en koeler afwaarts beweeg (dit word genoem konveksie). Deeltjies ys en druppels water borsel mekaar verby en skeer elektrone af. Die elektrone word deur die dalende deeltjies afgevee terwyl die nou positief gelaaide molekules opbeweeg. Die basis van die wolk kry 'n groot negatiewe lading en die bokant kry 'n positiewe lading. Wanneer hierdie verskil in lading (potensiaal of spanning genoem) groot genoeg word, probeer die gegenereerde elektriese veld dit regstel. U kry 'n groot en baie vinnige stroom stroom om die wanbalans reg te stel.

Ook Jupiter het enorme pakkies konvektiegas, en dieselfde proses kan plaasvind.

Weerlig genereer radiogolwe as gevolg van 'n fundamentele wet van elektrisiteit: as u 'n gelaaide deeltjie versnel, stuur dit elektromagnetiese golwe uit. Dit is 'n wonderlike term vir lig. As 'n weerligstraal ontlaai, versnel die elektrone baie, baie vinnig, en die manier waarop die fisika uitwerk, maak radiogolwe. Dit kan 'n wye verskeidenheid frekwensies hê, van enkele Hertz tot enkele miljard Hertz (of gigaHertz).

Die radiogolwe beweeg na buite, en as gevolg van redelik ingewikkelde fisika, wissel hulle met die ionosfeer, die laag gelaaide molekules in die aarde se atmosfeer wat ongeveer 80 tot 1000 kilometer bo die oppervlak strek. Die hoër frekwensies propageer vinniger deur hierdie laag, dus as die radiogolwe deur byvoorbeeld satelliete opgespoor word, kom die hoër frekwensie eerste daar, gevolg deur steeds laer frekwensies. As u dit in klank vertaal (lig en klank verskil baie, maar is albei golwe), kry u 'n skerp fluitjie wat op 'n hoë toonhoogte begin en val. Dit word om die rede 'fluiters' genoem.

Vertrou my: luister na een. Dit is baie cool. Creepy, maar cool.

Kunswerke wat groot hoeveelhede weerligstrale naby Jupiter se paal uitbeeld. Krediet: NASA / JPL-Caltech / SwRI / JunoCam

Die Juno-ruimtetuig wentel sedert Julie 2016 om die groot planeet. Daar is instrumente aan boord wat radiogolwe kan opspoor, en 'gehoor' fluiters van Jupiter. Baie van hulle. In werklikheid baie meer as enige ander sending, wat een ou vraag oor die planeet beantwoord het: Hoe gereeld weerlig voorkom. Een voorspelling het gebeur dat dit baie gebeur het, maar opsporings was yl. Volgens Juno-waarnemings was die voorspelling korrek ongeveer 1 - 30 flitse per vierkante kilometer per jaar. Dit klink miskien nie veel nie, maar Jupiter het baie vierkante kilometer bo-aan sy atmosfeer (ongeveer 60 miljard), dus dit vertaal in ongeveer 2.000 - 60.000 bliksems êrens op Jupiter tweede.

Interessant genoeg is die koers (nie die totale hoeveelheid nie, maar die 1-30 flitse per vierkante kilometer per jaar) ongeveer dieselfde as op aarde. Maar ons skone planeet is baie kleiner as Jupiter, dus kry ons minder weerligstrale.

Crash Course Astronomy Episode 16: Jupiter

Maar daar het ook nog 'n verrassing gewag: anders as die aarde, waar die meeste weerlig in die trope en naby die ewenaar voorkom, is die boute op Jupiter geneig om nader aan die pole uit te bars. Vreemd genoeg kan die rede vir albei planete dieselfde wees: sonlig.

Op aarde is die son ons grootste bron van hitte. Dit verhit die ewenaar meer as die pole, sodat ons meer konveksie daar kry, dus meer storms, so meer weerlig.

Jupiter is egter anders. Die son is vyf keer verder weg as op aarde, en hy kry dus net 1 / 25ste soveel hitte van die son af. Die meeste hitte in die atmosfeer van Jupiter styg uit die diep binneland, en dit is die oorsaak van konveksie daar.

Maar sonlig, hoewel dit swak is, het steeds 'n effek. Dit verhit die ekwator van Jupiter meer as die pole (soos op aarde), maar dit is geneig om die konveksie by die ewenaar te demp! As die stygende warm lug warm lug daarbo sien, word konveksie onderdruk (dit is die verskil in temperatuur wat die konveksie gedeeltelik aandryf). U kry dus minder stygende lug by die ewenaar en meer aan die pole, die teenoorgestelde van die aarde. As gevolg hiervan kom daar weerlig weer voor.

Interessant genoeg, Juno het meer weerlig naby die noordpool opgespoor as die suidpool van Jupiter. Dit word nie verstaan ​​nie. Ek sal daarop let dat die storms wat Juno aan die twee pole gesien het, ook anders is. Miskien hou dit verband? Hopelik sal Juno ons help om dit uit te vind.

Ek woon in Colorado, en ons kry groot somerstorms wat die lug aansienlik verdonker en baie weerlig opwek. Hulle is ontsagwekkend en mooi en skrikwekkend. Aarde en Jupiter is baie verskillende wêrelde, maar hulle het ook baie gemeen. Dit gee my iets om oor na te dink as ek in die donker fluit, en die weerlig fluit saam op 'n manier wat ek nie kan hoor nie.


18 raaisels en onbeantwoorde vrae oor ons sonnestelsel

Een van die groot dinge van sterrekunde is dat daar nog soveel is wat ons kan ontdek. Daar is soveel onbeantwoorde vrae en raaisels oor die heelal. Daar is altyd 'n raaisel om op te los en dit is 'n deel van die skoonheid.

Selfs in ons eie omgewing, die sonnestelsel, is daar baie vrae wat ons nog nie kon beantwoord nie. In hierdie artikel gaan ons 'n paar van die coolste raaisels ondersoek waaraan wetenskaplikes nog werk.

1. Waarom draai Venus agteruit?

Al die planete in die sonnestelsel draai in dieselfde rigting, behalwe een: Venus. As u na al die planete vanaf 'n punt aan die bokant van die Noordpool kon kyk, sou u almal linksom sien draai. Maar nie Venus nie. Venus draai kloksgewys.

Sterrekundiges het twee teorieë om te verklaar waarom dit gebeur. Een daarvan is dat Venus 'n groot impak op 'n ander voorwerp kon gehad het. Daardie botsing sou so kragtig gewees het dat dit die rigting van die Venus-rotasiebeweging verander het. Die tweede teorie is dat Venus so naby aan die son is en sy atmosfeer so dig is, dat die swaartekrag van die son getye geskep het wat die planeet se as 180º laat draai het.

2. Hoeveel onbekende dwergplanete is daar?

Ons teleskope het die afgelope paar dekades regtig vinnig verbeter. Met al hierdie vooruitgang het ons baie voorwerpe in die sonnestelsel begin vind waarvan ons nie weet nie. Dit lei tot die skepping van die Dwergplaneet kategorie om al hierdie voorwerpe te etiketteer wat nie regtig aan die kriteria voldoen om 'n planeet genoem te word nie, maar redelik naby was.

Die Internasionale Astronomiese Unie het tot dusver amptelik vyf dwergplanete erken, waaronder Pluto, maar daar is minstens 30 ander voorwerpe wat deur verskeie sterrekundiges voorgestel is en wat in die komende jare verder bestudeer sal word om te sien of dit aan die kriteria voldoen. Die meeste van hierdie dwergplanete sal in die gebied bekend as die Kuiper-gordel geleë wees, buite die baan van Neptunus.

Sommige sterrekundiges glo dat daar tot 200 dwergplanete kan wees wat wag om gevind te word.

3. Waarom is die atmosfeer van die son warmer as die oppervlak?

Een van die groter en mees teenintuïtiewe raaisels van die sonnestelsel waarvoor ons nie antwoorde kon vind nie, is waarom die buitenste laag van die son se atmosfeer warmer is as die oppervlak van die ster.

Die son bestaan ​​uit verskeie lae. Die sigbare oppervlak of die deel wat ons kan sien, word die genoem fotosfeer en brand by 'n temperatuur van ongeveer 5 700 K. Boonop het die son ook 'n atmosfeer en word die buitenste deel daarvan die korona. 'N Mens sou dink dat as die warmte van die oppervlak geskei word, dit sal begin verdwyn en die temperatuur van die korona laer sou wees as in die oppervlak. Wel, dit is nie die geval nie. In werklikheid is dit die teenoorgestelde as die temperatuur in die korona kan 1.000.000 K bereik.

Sommige teorieë is gevorm oor waarom dit gebeur wat te doen het met die ionisering van Helium in die atmosfeer, maar ons weet dit nie vir seker nie.

4. Hoe het Saturnus sy ringe gekry?

Saturnus se ringe is waarskynlik die mees ikoniese en herkenbare kenmerk van enige planeet in die sonnestelsel. Ons weet dat die ringe miljoene klein stukke rots, ys en stof is. Wat ons nie weet nie, is hoe dit ontstaan ​​het.

Daar is verskeie teorieë oor die oorsprong van die ringe. Die coolste een is die ringe is die oorblyfsels van 'n maan wat moontlik deur 'n asteroïde vernietig is, of deur Saturnus se eie swaartekrag verpletter is. Die ander moontlikheid is dat dit bloot oorblyfsels is van die oorspronklike wolk materiaal waaruit Saturnus gevorm is.

Aangesien ons oor die onderwerp van Saturnus se ringe gaan. Ons weet ook nie hoe oud hulle is nie. Hulle het dalk onlangs gevorm, of hulle was van die begin af daar. Dit wil voorkom asof die oplossing van een van hierdie twee raaisels ons regtig help om die ander op te los. Onlangse data van die Cassini-sonde dui daarop dat die ringe baie jonk kan wees en selfs gevorm het teen die tyd dat dinosourusse op die aarde geloop het (wat soos gister in astronomiese tyd was), maar dit moet nog bevestig word.

5. Waarom word Uranus sywaarts gekantel?

Iets baie nuuskierigs gebeur met Uranus-rotasie. Dit lyk asof die planeet aan sy kant is as jy dit vergelyk met die ander planete in die Sonnestelsel. Terwyl die rotasie-as van die ander planete meestal loodreg op die son se rigting is, is Uranus & # 8217-as gekantel en wys dit amper na die ster, wat die planeet laat lyk asof dit aan sy sy draai.

Dit is moontlik op 'n stadium in sy geskiedenis dat 'n groot voorwerp Uranus beïnvloed het en die rigting van sy as verander het. Sommige teorieë dui daarop dat dieselfde impak die meeste of al sy 27 mane geskep het.

Kyk na die video hierbo op vraag # 1 as u hierdie verskynsels wil visualiseer.

6. Bestaan ​​die Oort Cloud?

Het u al ooit gewonder waar komete vandaan kom? To solve that question, astronomers have theorized that a group of millions and maybe billions of small, icy, rocky objects exists on the outer limits of the Solar System. These objects form a huge “cloud” named the Oort Cloud after one of the astronomers who proposed it. Sometimes these objects will change be shot out of the Oort Cloud due to collisions or gravitational forces and become wandering comets.

The objects in the Oort Cloud are too small and far away to reflect any light from the Sun so its existence is still not confirmed. If you want to learn more about it, check out our comets explained for everyone article.

7. That weird vortex on Venus’ south pole

Artist’s representation of the vortex. Artist: edlo

There’s a very mysterious swirling vortex in the south pole of Venus that astronomers would love to know more about but haven’t been able to yet. It behaves a like a huge storm, but there’s no rain so it is likely made of other gases. One of the most puzzling things about it is how fast it rotates. It spins up to 60 times faster than the planet itself which is weird to us as storms on Earth are never faster than Earth’s rotational speed.

8. How was the Moon created?

One of the thing that says a lot about how little we still know about our universe is the fact we don’t even know for sure how our own Moon was formed.

The current theory most astronomers agree on is that at some point early in the Solar System’s life, a planet around the size of Mars crashed against Earth. This collision left a lot of debris and pieces of both planets hanging around but still trapped by Earth’s gravity and were left orbiting it. After millions of years, all these pieces came together thanks to gravity and formed the Moon.

While the theory is widely accepted, it leaves some questions up in the air, like why wasn’t Earth taken out of its orbit by this impact? and what happened to the other hypothetical planet?.

9. Planet Nine

Conspiracy theories have always liked imagining mysterious, unknown planets in the Solar System. They have called it different names Nibiru, Planet X, etc. Those theories tend to be way too out there to be real and lack the scientific foundations. But could there really be a planet we don’t know about out there? The answer surprisingly is: maybe.

It was only on 2005 when three big objects were discovered that were thought to be the mythical ninth (or tenth) planet beyond the orbit of Neptune. Those objects were later classified as the first dwarf planets and were named Eris, Haumea, and Makemake. But that got us thinking, what else is out there that our telescopes are still not powerful enough to detect?

If a planet was to exist in the outskirts of the Solar System, a popular theory is it could be located beyond the Kuiper Belt. It would be far enough from the Sun’s light to explain why we haven’t detected it yet and it would explain why the Kuiper Belt ends so suddenly as a planet could have cleared the area from other objects.

A planet closer to us would be very unlikely, though. We have looked and looked in there and by this point, we would have detected at least some kind of gravitational pull that astronomers couldn’t explain. If there’s a ninth planet, it is in those areas beyond Neptune that still remain a mystery to us.

10. Did Mars have oceans in the past?

Artist representation of how Mars would have looked like with a liquid water ocean.

This one we are close to figuring out.

For years astronomers have found evidence of erosion, channels, and canyons on Mars. As far as we know, all of those are caused by liquid water slowly forming them. From that data, we can hypothesize that at some point in the past Mars has liquid water running on the planet. Some astronomers think even one-third of the Martian surface could have been covered in water. Some scientists believe even today it would be possible for water to exist under Mars’ surface where it is safe from many of the effects that would have caused the surface water to disappear.

The more we explore and study Mars, the more this theory seems correct, but that opens other questions. What happened to Mars that made all that water evaporate or freeze? Could there have been life on the red planet at some point?

11. How long really is a day on Saturn?

With all the time we have spent looking at our Solar System and the fact NASA has sent the Cassini all the way to Saturn to explore the planet, you would think it wouldn’t be too hard to figure out how long does it take for Saturn to rotate. The answer, however, is a bit tricky because we know the rotational period of Saturn…but not really.

Here’s the thing, Saturn is a gas giant. This means the visible part we can see from outside the planet is mostly, well…gas. From our observations, we have seen it takes that gas somewhere between 10 hours and 10 minutes to 10 hours and 38 minutes to do one rotation depending on the area of Saturn you are looking at so we have taken that number as the rotational period for the planet. The problem is we don’t know if the inner core of the planet rotates at that very same rate because of all those layers of swirling gas around it.

12. Was Mars hit by a giant cosmic lightning bolt?

3D Model of Valles Marineris

There’s a huge, strange canyon on Mars called Valles Marineris. Just to give you an idea of how big it is, it is about 4 times deeper and 5 times longer than the Grand Canyon in Arizona. But its weirdness only starts there. Some scientists believe this canyon wasn’t formed in a traditional way (water slowly eroding the land over the course of millions of years) but in a much cooler manner. They believe Valles Marineris is a scar.

For years scientists have theorized the existence of cosmic lightning bolts. Imagine a lightning bolt, but on a cosmic scale, traveling across the cosmos with unimaginable amounts of energy. Then imagine this bolt hits a planet, let’s say, Mars. The impact would be big enough to leave a mark forever on the planet and create a valley the size of Valles Marineris.

One more evidence that could support the lighting bolt theory is that Mars also has a hole in its atmosphere that is leaking hydrogen into space. Could this hole have been created by that very same impact? Is that the reason why Mars lost its ocean?

13. Why are the planets so different in composition?

Most astronomers agree on the origin of the Solar System. They believed a disk of rocks and pebbles formed around the Sun and they started fusing impacting one another and fusing together to form the planets. But this creates a problem. If all the planets formed from the same disk and grew together at the same time, how come they ended up being so different from one another?

Some of the differences between planets can be attributed to variables like how close they are from the Sun. This explains for example why some planets could hold liquid water like Earth and (maybe) Mars while others can’t because they are too cold, but it doesn’t explain other things like the vast differences in size and composition.

Some theories suggest solar winds “blew away” the lighter materials, allowing for the outer planets to have a different composition. Another study found a correlation between the calcium isotope and the size of the planets, suggesting planets grew at the same rate, but then stopped growing at different times.

14. Do Jupiter and Saturn even have a core?

Photo of Jupiter taken by the Juno spacecraft

When we have lived only on one planet, it is hard to imagine how a different one might be so different and weird and in the case of Jupiter, Saturn, and others, so not-solid. While these two giants of our Solar System look just like a planet, they are mostly just gas as far as we can tell. If you were to take a guess without knowing, it would be easy to think behind all those storms, clouds and gas we see on top of those planets there would be a surface we might be able to land on some day and explore. Well, there isn’t. If you were to drop something on Jupiter, it wouldn’t hit a surface. It would just drop down into the center of the planet until it was crushed by the pressure.

Scientists believe both planets might have a core with a thin, rocky or icy layer in the middle because it fits with our current model for how planets are formed. The problem is, we have never actually seen or confirmed such core exists and data found by the Juno spacecraft on Jupiter left us with more questions than answers as it suggests Jupiter’s core might be dissolved.

15. Why does the Kuiper belt end so suddenly?

The Kuiper Belt is a group of asteroids orbiting the Sun beyond Neptune’s orbit. Think of the asteroid belt, but bigger. Some comets and meteors in the Solar System come from there, however, there’s something very curious about the Kuiper belt.

At some point about 50 astronomical units from the Sun, the Kuiper belt suddenly ends. This area is referred to as the Kuiper cliff and it is a mystery as it goes against our model of how the Solar System was formed. With our current theories, we would expect to see not only more objects beyond that, but they would be even bigger.

One theory that tries to explain this question suggests a planet would have cleared the area with its gravity and absorbed those objects. This is one of the most popular theories about the potential ninth planet mentioned earlier, but no evidence of such planet has ever been found.

The other theory is there are objects beyond the Kuiper cliff, but they are too small to reflect any light or to have any gravitational effect on its surroundings so we simply can’t detect them.

16. Why does Pluto have mountains?

Photo of Pluto with enhanced colors so its geology can be appreciated.

The dwarf planet Pluto has some of the most unique features of any other object in the Solar System. It has huge mountains made almost entirely out of ice. The question that puzzles scientists is where did they come from?

For a mountain to be created there needs to be geological activity. That means tectonic plates moving because of volcanic activity or some other form of heat release. And that’s where the big mystery lies, where are the heat and energy coming from?. As far as we can tell, Pluto is too far away from the Sun to receive much energy from it and its core is just ice and rock so there’s no lava flowing.

One theory suggests Pluto might have some sort of system of cryovolcanoes, which are basically volcanoes that spit water or gases, but the reality still remains a question to be answered.

17. Is there life in other places of the Solar System?

This is the big one, for sure. Finding life outside of Earth would be the biggest scientific discovery in the history of mankind. We have always wondered if it would be possible for other planets besides ours to sustain life or if they had it at some point in the past.

There are some places in our very own Solar System that might be a good place to start our search.

First, there is Mars. Our neighbor would make sense as we are pretty sure it had a water ocean in the past and temperature conditions wouldn’t have been too different to ours, at least back then. The multiple exploration rovers that we have managed to send to Mars have found some promising data like some complex chemical compounds the Curiosity rover found in 2018, but nothing has been conclusively proven.

The next best places to look for signs of life are moons. Specifically, Europa, one of Jupiter’s moons and Titan on Saturn. Europa from the outside loos to be made mostly made out of ice, but astronomers believe below the ice crust there are oceans of salt water that could have the right conditions for the development of life.

Titan is a curious satellite as it is the only moon in the Solar System that has its own atmosphere. It’s mostly made out of hydrogen but the atmospheric pressure isn’t that different from Earth’s. Titan is also believed to have ocean although they are made of methane.

It will be a while before we send probes to either Europa or Titan, but hopefully, at some point we will be able to explore them closely and check for signs of life.

18. How big is the Solar System really?

As we mentioned above when we talked about the Oort Cloud, we still don’t know much about the outer edges of the Solar System. So much we don’t even know where it ends.

Some astronomers mark the end of the Solar System at the Heliopause, the imaginary line where the solar winds stop. That would make the Solar System about 79 astronomical units wide in diameter, but the Oort cloud would be located way beyond that. If we take the Oort Cloud as the line for the Solar System’s end, it is estimated it could be up to 200,000 astronomical units away or a little more than 3 light years.

Afsluiting

As you can tell from our list, There are still many questions about our Solar System that need to be answered. We only picked the most interesting ones for this list but there are many more that didn’t make the cut like the crater shaped like a spide in Mercury or why is Titan the only moon with an atmosphere.

With all the advances in equipment and new techniques we will hopefully get some answers to a lot of these questions in the coming decades so stay tuned and keep learning. Maybe you will be the one who figures them out.

Elena is a Canadian journalist and researcher. She has been looking at the sky for years and hopes to introduce more people to the wonderful hobby that is astronomy.

Related Posts

Mars Books: The Best Reading About The Red Planet

Can Neptune Be Seen at Night Without a Telescope?

Can You See Saturn With A Telescope?

Mercury Explained for Kids: Facts, Questions, and History

What Planets are Visible from Earth?

Venus facts explained for kids

About Little Astronomy



Hi! I’m Elena. I’m a journalist who has been into astronomy since I was a kid. I founded this site to share tips and facts about astronomy and telescopes.

If you are new around here and you want to get started with the hobby, take a look at our recommended gear page.


Is There Lightning On Other Planets?

Now that you understand the climatic basis of lightning, it makes sense that there would be lightning on other planets, but it might look very different than it does on Earth!

An interesting aspect of lightning on Earth we haven&rsquot mentioned&mdashand one that is very relevant to detecting lightning on other planets&mdashis that it produces radio waves at a rather distinct wavelength. These special waves are known as Whistler waves, and since photographing lightning on other planets is obviously challenging, having another measurement metric for the existence of lightning is very helpful!

The red planet has fascinated human beings since we first saw it gleaming like a ruby in the sky. Most people know that the majority of Mars&rsquo atmosphere has been stripped away, leaving it a barren wasteland, so hearing that there are storms and lightning on Mars may come as a surprise. The massive dust storms that blow across the Martian landscape may not be filled with moisture like storms on Earth, but they are instead filled with incredibly fine Martian soil.

Due to the reduced gravity, this fine soil can be picked up by even a light breeze and carried for hundreds of miles before gravity brings it back to Earth. The swirling of different particles in the midst of these storms will create energy differentials, which will eventually build up within these &ldquoclouds&rdquo and be released. Whistler waves have been detected in these huge dust storms, and some visual evidence of lightning has also been found. Unfortunately, the NASA rovers that have long inhabited the Martian landscape have yet to snap a proper photograph of Martian lightning from the ground!

Jupiter

If you&rsquove ever read anything about Jupiter, the largest planet in our solar system, then you know it is absolutely wracked with storms. Jupiter is a gas giant, so swirling atmospheric conditions is logical. The largest storm system on Jupiter, one that has been raging for more than 300 years, is known as the Great Red Spot (GRS) and is about twice as large as Earth! Interestingly enough, various flybys by NASA spacecraft (Cassini and Juno) have confirmed that the lightning on the planet is very similar to the lightning we experience on Earth. Whistler waves, as explained above, have also been detected from Jupiter, in addition to visual confirmation of lightning strikes!

Due to the difference in our atmospheres, the lightning strikes on Jupiter appear to take longer to discharge, perhaps lasting for a full minute or two, whereas strikes on Earth discharge quickly, in the blink of an eye! The power of &ldquoJovian lightning&rdquo is also staggering, up to hundreds of times as energetic as strikes on our planet. In a different trend than seen on Earth, most of the lightning strikes on Jupiter occurs near the poles, whereas lightning on Earth tends to be concentrated around the Equator.

Venus

It was long thought that the magnetic orientation and atmospheric composition of Venus made Venusian lightning impossible, despite its similar size and density to Earth. However, data brought in by more recent missions has revealed Whistler waves emanating from the planet, at a similar intensity and frequency as lightning on Earth! Venus, being closer to the sun than Earth, receives a great deal of energy from the sun into its atmosphere. As that energy is distributed and begins to separate into different regions, a charge will eventually build up and be released. If the surface of Venus wasn&rsquot so incredibly hot, watching a storm there might not be too dissimilar to watching a summer storm on Earth!


The science of lightning in extrasolar planets

A thunderstorm above Unna, in Germany. Credit: smial/Wikipedia.

Scientists in Scotland are hoping to make a major 'leap' in working out whether a bolt of lightning could trigger life on planets outside the solar system.

The team, at the University of St Andrews, has been studying lightning in extrasolar planets to better understand how atmospheres on earth become electrically charged.

In turn, the researchers, from the University's LEAP (Life Electricity Atmosphere Planets) group at the School of Physics & Astronomy hope to learn more about the role lightning played in generating the 'building blocks' for life.

Lead researcher Dr Christiane Helling will reveal one of her group's findings today at a major meeting involving 11,000 scientists working in the Earth, planetary and space sciences.

The researcher will talk about her work in a special session on lightning at the EGU (European Geosciences Union) General Assembly in Vienna.

Dr Helling said, "Atmospheric electrical discharges – or lightning – have been observed on planets other than Earth such as Jupiter, Uranus and Neptune, but it is very likely that lightning also occurs outside the Solar System too.

"We studied both exoplanets and brown dwarfs, which host clouds made of minerals or gemstones, to see how much energy is deposited into the atmosphere if a lightning strike hits.

A lightning discharge is started by a small-scale 'streamer discharge' which can evolve into a large-scale lightning bolt.

By building a discharge model related to lab works from the University of Einthoven, Dr Helling and her team were able to study the large-scale properties of lightning in extrasolar, cloud-forming atmospheres, and how much energy would be injected by such a lightning strike. They found that lightning strikes are more energetic in brown dwarfs than in giant gas planets.

"Our work combines plasma physics experiments performed in laboratories on Earth with our research into cloud formation in extrasolar atmospheres," Dr Helling explained.

"Our work tests the physical processes on Earth in non-terrestrial environments such as hydrogen-dominated atmospheres and gemstone clouds outside the solar system, in contrast to the nitrogen-dominated atmosphere and water clouds on Earth."

The St Andrews research could help in extreme situations of lightning on Earth.

"Warning systems rely on techniques tested for a well-defined set of conditions relevant for Earth. But what if the situation changed to the extreme by some unforeseen circumstances? Applying knowledge gathered on Earth to the extreme conditions in space will allow us to identify potentially weaknesses, and thereby even save lives if extreme conditions might arise," Dr Helling continued.

As to whether the scientists are any closer to working out whether lightning could have triggered life on earth, the St Andrews scientist said, "We have made the first steps. We have started to investigate how an extrasolar atmosphere changes its chemical composition due to the energy released by lightning, which in turn increases the atmospheric temperature considerably.

"There is now the possibility of working out whether large-scale lightning discharges could occur in gemstone clouds, how big they could grow, and as a result whether such events could have triggered the formation of prebiotic molecules responsible for the origin of life."


ANN ARBOR—For the first time, direct evidence of lightning has been detected on Mars, say University of Michigan researchers who found signs of electrical discharges during dust storms on the Red Planet.

The bolts were dry lightning, says Chris Ruf, a professor in the departments of Atmospheric, Oceanic and Space Sciences and Electrical Engineering and Computer Sciences.

“What we saw on Mars was a series of huge and sudden electrical discharges caused by a large dust storm,” Ruf said. “Clearly, there was no rain associated with the electrical discharges on Mars. However, the implied possibilities are exciting.”

Electric activity in Martian dust storms has important implications for Mars science, the researchers say.

“It affects atmospheric chemistry, habitability and preparations for human exploration. It might even have implications for the origin of life, as suggested by experiments in the 1950s,” said Nilton Renno, a professor in the Department of Atmospheric, Oceanic and Space Sciences.

The findings are based on observations made using an innovative microwave detector developed at the U-M Space Physics Research Laboratory. The kurtosis detector, which is capable of differentiating between thermal and non-thermal radiation, took measurements of microwave emissions from Mars for approximately five hours a day for 12 days between May 22 and June 16, 2006.

On June 8, 2006 both an unusual pattern of non-thermal radiation and an intense Martian dust storm occurred, the only time that non-thermal radiation was detected. Non-thermal radiation would suggest the presence of lightning.

The researchers reviewed the data to determine the strength, duration and frequency of the non-thermal activity, as well as the possibility of other sources. But each test led to the conclusion that the dust storm likely caused dry lightning.

This work confirms soil measurements from the Viking landers 30 years ago, and it challenges 2006 experiments that suggested otherwise.

Data from the Viking landers raised the possibility that Martian dust storms might be electrically active like Earth’s thunderstorms and thus, might be a source of reactive chemistry. But the hypothesis was untestable. In 2006, using theoretical modeling, laboratory experiments and field studies on Earth, a group of planetary scientists suggested that there was no direct evidence that lightning occurred on Mars. This new research refutes those findings.

“Mars continues to amaze us. Every new look at the planet gives us new insights,” said Michael Sanders, manager of the exploration systems and technology office at Jet Propulsion Laboratory and a researchers involved in this study.


Are there lightning bolts on Mars? - Sterrekunde

The Lightning Bolt asterism created as a tribute to David Bowie by MIRA Public Observatory in Belgium

When astronomers talk about the death of stars, it's usually about stellar evolution, not pop stars. But what if the pop star were the creator of Ziggy Stardust, Major Tom and Aladdin Sane, and sang “Life on Mars”, “Starman” and “Hallo Spaceboy”? That would be different, and when David Bowie died on January 10, 2016, there were a number of astronomical tributes.

An astronaut
Canadian astronaut Chris Hadfield commanded the International Space Station's Expedition 35 in 2013. His photographs of Earth, insights into life on the space station, poetry and commentary were very popular with the folk on the ground. And he topped it off with a first – the first music video recorded in space. With the agreement and cooperation of David Bowie, Hadfield recorded a slightly updated version of Bowie's 1969 hit “Space Oddity”.

In response to Hadfield's video Bowie tweeted:
CHRIS HADFIELD SINGS SPACE ODDITY IN SPACE! “Hallo Spaceboy. ”
Bowie also called it “possibly the most poignant version of the song ever created.”

On January 11, 2016 Hadfield tweeted:
Ashes to ashes, dust to stardust. Your brilliance inspired us all. Goodbye Starman.
A spacecraft
On the cover of Bowie's album “Aladdin Sane” his face bore the now-famous red lightning bolt. The day after Bowie died, ESA's Rosetta Mission twitter feed showed Rosetta with the red lightning bolt and the tweet:
RIP David Bowie fellow space traveller
An asterism
The Belgian music station Studio Brussel came up with an idea for a starry tribute, and asked MIRA Public Observatory for their assistance. The English language news stories all used the same wording – presumably from a press release – saying that a “constellation” in the shape of the Aladdin Sane lightning bolt had “been registered” in his honor. The observatory depicted the bolt from "seven stars" that were “in the vicinity of Mars” at the time of Bowie's death.

You can't make a new constellation and get it accepted by the International Astronomical Union (IAU). The eighty-eight recognized constellations are regions which cover the whole sky without gaps or overlaps. Interestingly, the astronomer responsible for drawing the boundaries was the Belgian astronomer Eugène Delporte.

The lightning bolt would be, in fact, an asterism. That's a recognizable group of stars which is part of one or more constellations. Asterisms aren't official. There's nowhere to register them. Some well-known asterisms are the Big Dipper, Summer Triangle and Teapot of Sagittarius. You can make them up as you wish, and share them on your Facebook page.

An additional confusion is that the list doesn't contain seven stars and doesn't quite make sense. My thanks to the Weather Network for filling in the blanks with the help of a Stellarium program. But that also made it obvious that only two of the stars were in the vicinity of Mars. There was even one in Octans, a constellation created by Nicolas-Louis de Lacaille, which includes the South Celestial Pole.

Although you'd never be able to look up and find the asterism in the night sky, it's a great graphic and a lovely idea. The Stardust for Bowie tribute lets fans use Google Sky to add their own tribute and help brighten up the lightning bolt.

An asteroid
On January 11, 2016 NASA tweeted:
Dancing out in space. An asteroid named for David Bowie orbits between Mars and Jupiter
Asteroid 342843 DavidBowie was named in 2015, just before David Bowie's 69th birthday, though I don't know if he was aware of it. It's about a mile across and a main-belt asteroid that takes some four and a half years to orbit the Sun. Main-belt asteroids orbit in the broad asteroid region between Mars and Jupiter.

Felix Hormuth of the Max Planck Institute for Astronomy discovered the asteroid at the Calar Alto Observatory in Spain. Although Hormuth has discovered a number of asteroids, he is an astrophysicist, and refers to his asteroid discoveries as a “hobby”, a by-product of telescope testing.

In a 2015 interview Hormuth told the Rhein-Neckar-Zeitung that he had named an asteroid after David Bowie, but that he didn't think anyone noticed. People have certainly noticed now.

Verwysing:
https://www.theweathernetwork.com/news/articles/starman-bowie-gets-his-own-constellation-see-it-here/62572/

Note: For more links to items in this article, please click on “Post your thoughts” below, which will to take you to the forum page.

Content copyright © 2021 by Mona Evans. Alle regte voorbehou.
This content was written by Mona Evans. If you wish to use this content in any manner, you need written permission. Contact Mona Evans for details.


First Direct Evidence Of Lightning On Mars Detected

For the first time, direct evidence of lightning has been detected on Mars, say University of Michigan researchers who found signs of electrical discharges during dust storms on the Red Planet.

The bolts were dry lightning, says Chris Ruf, a professor in the departments of Atmospheric, Oceanic and Space Sciences and Electrical Engineering and Computer Sciences.

"What we saw on Mars was a series of huge and sudden electrical discharges caused by a large dust storm," Ruf said. "Clearly, there was no rain associated with the electrical discharges on Mars. However, the implied possibilities are exciting."

Electric activity in Martian dust storms has important implications for Mars science, the researchers say.

"It affects atmospheric chemistry, habitability and preparations for human exploration. It might even have implications for the origin of life, as suggested by experiments in the 1950s," said Nilton Renno, a professor in the Department of Atmospheric, Oceanic and Space Sciences.

The findings are based on observations made using an innovative microwave detector developed at the U-M Space Physics Research Laboratory. The kurtosis detector, which is capable of differentiating between thermal and non-thermal radiation, took measurements of microwave emissions from Mars for approximately five hours a day for 12 days between May 22 and June 16, 2006.

On June 8, 2006 both an unusual pattern of non-thermal radiation and an intense Martian dust storm occurred, the only time that non-thermal radiation was detected. Non-thermal radiation would suggest the presence of lightning.

The researchers reviewed the data to determine the strength, duration and frequency of the non-thermal activity, as well as the possibility of other sources. But each test led to the conclusion that the dust storm likely caused dry lightning.

This work confirms soil measurements from the Viking landers 30 years ago, and it challenges 2006 experiments that suggested otherwise.

Data from the Viking landers raised the possibility that Martian dust storms might be electrically active like Earth's thunderstorms and thus, might be a source of reactive chemistry. But the hypothesis was untestable. In 2006, using theoretical modeling, laboratory experiments and field studies on Earth, a group of planetary scientists suggested that there was no direct evidence that lightning occurred on Mars. This new research refutes those findings.

"Mars continues to amaze us. Every new look at the planet gives us new insights," said Michael Sanders, manager of the exploration systems and technology office at Jet Propulsion Laboratory and a researchers involved in this study.

The new finding will be published in an upcoming issue of Geophysical Research Letters. The paper is called "The Emission of Non-Thermal Microwave Radiation by a Martian Dust Storm." In addition to Ruf and Renno, other U-M authors include Jasper Kok, a recent Ph.D. graduate from the Department of Atmospheric, Oceanic and Space Sciences Etienne Bandelier, a graduate student in the same department and Steve Gross, a lead research engineer in the same department.

Verhaalbron:

Materiaal verskaf deur University of Michigan. Opmerking: inhoud kan volgens styl en lengte geredigeer word.