Sterrekunde

Is daar dalk weerlig op Io?

Is daar dalk weerlig op Io?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Sover ons weet, het Jupiter se maan Io die meeste vulkaniese aktiwiteit van enige bekende hemelliggaam. Dit het die meeste vulkane wat aktief is en hulle breek gereeld uit. Op aarde (die derde planeet van die son) is daar weerlig tydens vulkaniese uitbarstings en op Venus (die 2de planeet) is daar weerlig, waarskynlik ook tydens uitbarstings. Is daar ooit weerlig tydens 'n uitbarsting op Io opgespoor, of is dit om een ​​of ander rede nie moontlik om weerlig tydens uitbarstings op Io te voorkom nie?


As gevolg van die baie dun SO2-atmosfeer, sou ek teen weerlig wedden; onder normale omstandighede is die druk 0,3 tot 3 nbar, met pluime wat 5 tot 40 nbar bereik. Dit klink nie asof dit weerlig kan oordra nie. Maar aangesien die omgewing ook baie ionisasie het, kan daar ook ontledings van plasma en vakuum wees. Kortom, ek vermoed dit kan enige kant toe gaan, maar as daar weerlig sou wees, sou dit eerder anders as op aarde wees, aangesien dit 'n byna vakuumontlading sou wees.

Sover ek kon agterkom, is daar geen empiriese bliksemopsporing by Io nie. Ek vermoed dat die radiometings wat dit kan opspoor, deur die algehele geraas van die Jupiter-Io-omgewing oorval word.


Is daar dalk weerlig op Io? - Sterrekunde


Jupiter is die vyfde planeet vanaf die son en die grootste planeet binne die sonnestelsel. Dit is 'n gasreus met 'n massa van 'n duisendste van die son, maar is twee en 'n half keer die massa van al die ander planete in ons sonnestelsel saam. Jupiter word saam met Saturnus, Uranus en Neptunus as 'n gasreus geklassifiseer. Saam word hierdie vier planete soms die Joviese of buitenste planete genoem.

Die planeet was bekend deur sterrekundiges van antieke tye en het verband gehou met die mitologie en godsdienstige oortuigings van baie kulture. Die Romeine het die planeet vernoem na die Romeinse god Jupiter. Vanuit die aarde kan Jupiter 'n skynbare grootte van -2,94 bereik, wat dit gemiddeld die derde helderste voorwerp in die naghemel na die maan en Venus maak. (Mars kan Jupiter se helderheid op sekere punte in sy baan kortliks ooreenstem.)

Jupiter bestaan ​​hoofsaaklik uit waterstof met 'n kwart van sy massa as helium; dit kan ook 'n rotsagtige kern van swaarder elemente hê. Vanweë sy vinnige rotasie is die vorm van Jupiter die van 'n oblate sferoïde (dit het 'n effense maar opvallende bult rondom die ewenaar). Die buitenste atmosfeer is sigbaar in verskillende bande op verskillende breedtegrade geskei, wat tot onstuimigheid en storms langs hul interaksiegrense lei.

'N Prominente resultaat is die Groot Rooi Vlek, 'n reuse-storm wat bekend is dat dit sedert minstens die 17de eeu bestaan ​​het toe dit die eerste keer met 'n teleskoop gesien is. Rondom die planeet is 'n flou planetêre ringstelsel en 'n kragtige magnetosfeer. Daar is ook minstens 66 mane, insluitend die vier groot mane genaamd die Galilese mane wat die eerste keer in 1610 deur Galileo Galilei ontdek is. Ganymedes, die grootste van hierdie mane, het 'n groter deursnee as dié van die planeet Mercurius.

Jupiter is al by verskeie geleenthede deur robotruimtetuie ondersoek, veral tydens die vroeë Pioneer- en Voyager-vliegmissies en later deur die Galileo-baan. Die mees onlangse sonde wat Jupiter besoek het, was die New-Horizons-ruimtetuig, wat aan Pluto gebind is, einde Februarie 2007. Die sonde het die swaartekrag van Jupiter gebruik om die spoed te verhoog. Toekomstige teikens vir verkenning in die Joviaanse stelsel sluit die moontlike ysbedekte vloeibare oseaan op die maan Europa in.

Jupiter is sedert die antieke tyd bekend en is met die blote oog in die naghemel sigbaar. In 1610 ontdek Galileo Galilei die vier grootste mane van Jupiter met behulp van 'n teleskoop, die eerste waarneming van ander mane as die aarde.

Jupiter is 2,5 keer massiewer as al die ander planete saam, so massief dat sy barycenter met die son eintlik bo die sonoppervlak lê (1.068 sonstrale vanaf die middel van die son). Dit is 318 keer massiewer as die aarde, met 'n deursnee van 11 keer die aarde en met 'n volume van 1300 keer die aarde. Dit word deur baie mense 'n "mislukte ster" genoem, alhoewel die vergelyking soortgelyk is aan die noem van 'n asteroïde ''n mislukte aarde' '.

So indrukwekkend as wat dit is, is buitekolêre planete met baie groter massas ontdek. Daar word egter geglo dat dit ongeveer so 'n groot deursnee het as wat 'n planeet van sy samestelling kan hê, aangesien die toevoeging van ekstra massa slegs tot verdere gravitasiekompressie sal lei (totdat ontsteking plaasvind). Daar is geen duidelike definisie van wat 'n groot en massiewe planeet soos Jupiter van 'n bruin dwerg onderskei nie, alhoewel laasgenoemde nogal spesifieke spektrale lyne besit, maar in elk geval sal Jupiter ongeveer sewentig keer so massief moet wees as dit sou ster word.

Jupiter het ook die vinnigste rotasiesnelheid van enige planeet in die sonnestelsel, wat binne effens minder as tien uur 'n volledige omwenteling op sy as maak, wat lei tot 'n afplatting wat maklik gesien kan word deur 'n aardse amateurteleskoop. Sy bekendste kenmerk is waarskynlik die Groot Rooi Vlek, 'n storm groter as die Aarde. Die planeet is altyd bedek met 'n laag wolke.

Jupiter is gewoonlik die vierde helderste voorwerp in die lug (na die son, die maan en Venus lyk Mars soms helderder as Jupiter, terwyl Jupiter soms helderder lyk as Venus). Dit is sedert antieke tye bekend. Die ontdekking van Galileo Galilei, in 1610, van Jupiter se vier groot mane Io, Europa, Ganymedes en Callisto (nou bekend as die Galilese mane) was die eerste ontdekking van 'n hemelse beweging wat blykbaar nie op die aarde gerig was nie. Dit was 'n belangrike punt ten gunste van Copernicus se heliosentriese teorie oor die bewegings van die planete. Galileo se uitgesproke steun aan die Copernicaanse teorie het hom in die moeilikheid gebring met die Inkwisisie.

Fisiese eienskappe, weerlig en atmosfeer

Jupiter bestaan ​​uit 'n relatief klein rotsagtige kern, omring deur metaalwaterstof, omring deur vloeibare waterstof, wat omring word deur gasvormige waterstof. Daar is geen duidelike grens of oppervlak tussen hierdie verskillende waterstoffases nie, en die toestande meng glad van gas tot vloeistof as 'n mens daal.

Die atmosfeer bevat spoorhoeveelhede metaan, waterdamp, ammoniak en 'rots'. Daar is ook spore van koolstof, etaan, waterstofsulfied, neon, suurstof, fosfien en swael. Die buitenste laag van die atmosfeer bevat kristalle van bevrore ammoniak. Hierdie atmosferiese samestelling is baie naby aan die samestelling van die sonnevel. Saturnus het 'n soortgelyke samestelling, maar Uranus en Neptunus het baie minder waterstof en helium.

Jupiter se boonste atmosfeer ondergaan differensiële rotasie, 'n effek wat Giovanni Cassini (1690) die eerste keer opgemerk het. Die rotasie van Jupiter se poolatmosfeer is

5 minute langer as dié van die ekwatoriale atmosfeer. Daarbenewens vloei wolkebande van verskillende breedtegrade in teenoorgestelde rigtings oor die heersende winde. Die wisselwerking tussen hierdie teenstrydige sirkulasiepatrone veroorsaak storms en onstuimigheid. Windsnelhede van 600 km / h is nie ongewoon nie. 'N Besondere hewige storm, ongeveer drie keer die deursnee van die aarde, staan ​​bekend as die Groot Rooi Vlek.


Weerlig 'Sprites' is vir die eerste keer op Jupiter opgespoor Live Science - 29 Oktober 2020

NASA se Juno-ruimtetuig het pas beelde van kleurvolle sarsies bliksemagtige elektrisiteit hoog in Jupiter se atmosfeer vasgelê. Hierdie verskynsels, insluitend kwellievormige 'sprites' en gloeiende skywe wat 'elwe' genoem word, kom ook hoog in die atmosfeer van die aarde voor tydens donderstorms.


Juno los die 39-jarige raaisel op van Jupiter-weerlig PhysOrg - 7 Junie 2018
Sedert die NASA se Voyager 1-ruimtetuig in Maart 1979 verby Jupiter gevlieg het, wonder wetenskaplikes oor die oorsprong van die bliksem van Jupiter. Hierdie ontmoeting het die bestaan ​​van Joviaanse weerlig bevestig, wat eeue lank geteoretiseer is. Maar toe die eerbiedwaardige ontdekkingsreisiger seer maak, het die data getoon dat die weerlig-geassosieerde radioseine nie ooreenstem met die besonderhede van die radioseine wat deur weerlig hier op Aarde geproduseer word nie. In 'n nuwe artikel wat vandag in Nature gepubliseer word, beskryf wetenskaplikes van NASA se Juno-missie die maniere waarop weerlig op Jupiter in ooreenstemming met die aarde se weerlig is. Alhoewel die twee soorte weerlig op sommige maniere polêre teenoorgestelde is.


'Diamantreën' val op Saturnus en Jupiter BBC - 14 Oktober 2013
Amerikaanse wetenskaplikes het bereken dat diamante wat die regte grootte is wat die sterre van die Silwerskerm gedra het, op Saturnus en Jupiter sou reën. Nuwe atmosferiese data vir die gasreuse dui aan dat koolstof volop is in sy skitterende kristalvorm, sê hulle. Weerligstorms verander metaan in roet (koolstof) wat, terwyl dit val, in stukke grafiet en dan diamant verhard word.


Fireballs Light Up Jupiter Science Daily - 11 September 2010
Amateur-sterrekundiges wat saam met professionele sterrekundiges werk, het hierdie somer twee vuurballe gesien wat die atmosfeer van Jupiter verlig, wat die eerste keer is wat teleskope op die aarde relatief klein voorwerpe in die atmosfeer van die reuse-planeet opvang. Die twee vuurballe - wat helder sproete op Jupiter geproduseer het wat sigbaar was deur middel van teleskope in die agterplaas - het onderskeidelik op 3 Junie 2010 en 20 Augustus 2010 voorgekom.

NASA se Juno-sonde het verlede maand 'n reuse-nuwe storm naby Jupiter se suidpool ontdek, 'n paar weke nadat hy 'n dramatiese manoeuvre gehad het om dood te maak. Juno het op 3 November die nuutgevonde maalstroom, wat omtrent net so breed soos Texas is, bespied tydens sy mees onlangse vlug van Jupiter. Die storm sluit aan by 'n gesin van ses ander siklone in die suidpoolgebied van Jupiter, wat Juno opgemerk het by vorige passe deur die gasreus. (Hierdie ontmoetings het terloops ook nege siklone naby Jupiter se noordpool geopenbaar.)


NASA se Juno onthul donker oorsprong van een van Jupiter se groot ligskoue PhysOrg - 17 Maart 2021

Nuwe resultate van die Ultraviolet Spectrograph-instrument op NASA se Juno-missie onthul vir die eerste keer die geboorte van oormore in die oggend, die vroeë oggend wat uniek is aan Jupiter se skouspelagtige aurorae. Hierdie ontsaglike, kortstondige vertonings van die lig kom aan beide Joviese pole voor en is voorheen slegs waargeneem deur observatoriums op die aarde en om die aarde, veral NASA se Hubble-ruimteteleskoop.


Groot nuwe storm skep 'n seshoek by Jupiter's South Pole Live Science - 15 Desember 2019

NASA se Juno-sonde het verlede maand 'n reuse-nuwe storm naby Jupiter se suidpool ontdek, 'n paar weke nadat hy 'n dramatiese manoeuvre gehad het om dood te maak. Juno het op 3 November die nuutgevonde maalstroom, wat omtrent net so breed soos Texas is, bespied tydens sy mees onlangse vlug van Jupiter. Die storm sluit aan by 'n gesin van ses ander siklone in die suidpoolgebied van Jupiter, wat Juno opgemerk het by vorige passe deur die gasreus. (Hierdie ontmoetings het terloops ook nege siklone naby Jupiter se noordpool geopenbaar.)


Skouspelagtige aurora verlig Jupiter se Noordpool The Guardian - 30 Junie 2016

Die beeld van die Noorderlig is geneem voor die koms van Nasa se ruimteskip Juno volgende week, wat 'n jaar lank die grootste planeet in die sonnestelsel sal monitor. Jupiter is bekend vir sy kleurvolle storms soos die Groot Rooi Vlek wat gedurig in die atmosfeer van die planeet draai. Maar sy kragtige magneetveld beteken ook dat dit skouspelagtige ligskoue aan sy pole het. Net soos op Aarde word auroras geskep wanneer deeltjies met hoë energie die atmosfeer van 'n planeet naby sy magnetiese pole binnedring en met atome van gas bots. '


Jupiter het auroras. Net soos naby die aarde kom die magnetiese veld van die grootste planeet van ons sonnestelsel saam as dit deur 'n vlaag gelaaide deeltjies van die son beïnvloed word. Hierdie magnetiese kompressie laai deeltjies na Jupiter se pole en af ​​in die atmosfeer. Daar word elektrone tydelik opgewek of weggeslaan van atmosferiese gasse, waarna die aurorale lig uitstraal wanneer dit ontwater of herkombineer word met atmosferiese ione. Die voorgestelde illustrasie beeld die wonderlike magnetosfeer rondom Jupiter in aksie uit. In die ingeboude beeld wat verlede maand vrygestel is, toon die Chandra X-ray Observatory, wat om die aarde wentel, onverwags kragtige X-straallig wat deur Joviaanse aurora's uitgestraal word, in perskleurig uitgebeeld. Die Chandra-inlas is bo-op 'n optiese beeld wat op 'n ander tydstip deur die Hubble-ruimteteleskoop geneem is. Hierdie aurora op Jupiter is in Oktober 2011 gesien, enkele dae nadat die son 'n kragtige koronale massa-uitwerping (CME) uitgestraal het.

Aurora op Jupiter. Drie helder kolletjies word geskep deur magnetiese vloedbuise wat aan die Joviaanse mane Io (aan die linkerkant), Ganymedes en Europa aan die onderkant verbind. Daarbenewens kan die baie helder, amper sirkelvormige streek, die hoof ovaal genoem, en die flouer polêre aurora gesien word.

Jupiter het 'n baie groot en kragtige magnetosfeer. Trouens, as u Jupiter se magnetiese veld vanaf die aarde kon sien, sou dit vyf keer so groot lyk as die volmaan in die lug, alhoewel dit soveel verder weg was. Hierdie magneetveld versamel 'n groot stroom deeltjiestraling in Jupiter se stralingsgordels, sowel as die vervaardiging van 'n dramatiese gas torus en vloedbuis wat verband hou met Io. Jupiter se magnetosfeer is die grootste planetêre struktuur in die sonnestelsel.

Die Pioneer-sondes het die bestaan ​​bevestig dat Jupiter se enorme magnetiese veld 10 keer sterker is as die aarde en 20 000 keer soveel energie bevat. Die sensitiewe instrumente aan boord het bevind dat die Joviese magnetiese veld se "noord" -magnetiese pool aan die geografiese suidpool van die planeet is, met die as van die magneetveld 11 grade van die Joviaanse rotasie-as gekantel en vanaf die middelpunt van Jupiter verskuif op 'n soortgelyke manier as die as van die Aarde se veld. Die Pioneers het die boogskok van die Joviaanse magnetosfeer tot 26 miljoen kilometer (16 miljoen myl) gemeet, met die magnetiese stert wat verder as Saturnus se baan strek.

Die data het getoon dat die magnetiese veld vinnig in grootte aan die sonkant van Jupiter wissel weens drukvariasies in die sonwind, 'n effek wat in besonderhede deur die twee Voyager-ruimtetuie bestudeer is. Daar is ook ontdek dat strome atoedeeltjies met 'n hoë energie uit die Joviese magnetosfeer uitgestoot word en tot by die baan van die aarde beweeg. Energieke protone is gevind en gemeet in die Joviese stralingsgordel en daar is elektriese strome tussen Jupiter en sommige van sy mane, veral Io, opgespoor.


Die kalmte in die middel van die Groot Rooi Vlek: Nuwe studie van Jupiter se reuse-storm vind orkaanagtige winde waai teen 450 mph aan sy rand - maar die middel is vreemd kalm Daily Mail - 6 November 2018
Hierdie en ander aspekte van hierdie verskynsel is die fokuspunt van die navorsing wat die Juno-sending gedurende die volgende paar jaar gaan doen. Die Groot Rooi Vlek, wat 150 jaar gelede vir die eerste keer waargeneem is, verskyn deur die teleskoop vanweë sy rooierige kleur teen die wit, geel, oker wolke wat kontrasteer met die res van die planeet. Ondanks die talle studies wat oor die storm gedoen is, hou die aard daarvan 'n groot uitdaging vir weerkundiges in.

Die Groot Rooi Vlek is 'n antisikloniese storm op die planeet Jupiter, 22 & deg suid van die ewenaar wat minstens 300 jaar geduur het. Die storm is groot genoeg om sigbaar te wees deur middel van teleskope op die aarde. Dit is die eerste keer deur Cassini of Hooke waargeneem omstreeks 1665.

Hierdie dramatiese siening van Jupiter se Groot Rooi Vlek en sy omgewing is op 25 Februarie 1979 deur Voyager 1 verkry, toe die ruimtetuig 9,2 miljoen kilometer van Jupiter af was. Wolkbesonderhede van so klein as 160 kilometer kan hier gesien word. Die kleurvolle, golwende wolkepatroon links van die Rooi Vlek is 'n gebied van buitengewoon komplekse en veranderlike golfbeweging. Om 'n idee te gee van die skaal van Jupiter, is die wit ovale storm direk onder die Groot Rooi Vlek ongeveer dieselfde deursnee as die Aarde.

Storms soos hierdie kom nie ongewoon voor in die atmosfeer van gasreuse nie. Jupiter het ook wit ovale en bruin ovale, wat minder naamlose storms is. Wit ovale bestaan ​​meestal uit relatief koel wolke in die boonste atmosfeer. Bruin ovale is warmer en is geleë in die "normale wolklaag". Sulke storms kan ure of eeue duur.

Dit is nie presies bekend wat die rooi kleur van die Groot Rooi Vlek veroorsaak nie. Teorieë wat deur laboratoriumeksperimente ondersteun word, veronderstel dat die kleur veroorsaak kan word deur enige van "komplekse organiese molekules, rooi fosfor of nog 'n ander swawelverbinding", maar 'n konsensus moet nog bereik word.

Die Groot Rooi Vlek is opvallend stabiel, aangesien dit al meer as 300 jaar gelede opgemerk is. Verskeie faktore kan verantwoordelik wees vir die lang lewensduur daarvan, soos die feit dat dit nooit soliede oppervlaktes teëkom waaroor dit sy energie kan versprei nie en dat die beweging deur Jupiter se interne hitte aangedryf word. Simulasies dui daarop dat die kol geneig is om kleiner atmosferiese steurnisse op te neem.

Aan die begin van 2004 is die Groot Rooi Vlek ongeveer die helfte so groot soos 100 jaar gelede. Dit is nie bekend hoe lank die Groot Rooi Vlek sal duur nie, en of dit die gevolg is van normale skommelinge.

Op 19 Oktober 2003 is 'n swart vlek op Jupiter deur die Belgiese sterrekundige Olivier Meeckers afgeneem. Alhoewel dit nie 'n ongewone gebeurtenis was nie, het hierdie wetenskapfiksie-aanhangers en samesweringsteoretici die fantasie aangegryp, wat sover gegaan het om te bespiegel dat die plek 'n bewys was van kernaktiwiteit op Jupiter, wat veroorsaak is deur Galileo se ongeluk op die planeet 'n maand tevore. Galileo het ongeveer 15,6 kg plutonium-238 as kragbron, in die vorm van 144 pellets plutoniumdioksied, 'n keramiek, gedra. Die individuele korrels (wat na verwagting tydens die inskrywing sou skei) het aanvanklik ongeveer 108 gram 238Pu elk bevat (ongeveer 10% sou verval het teen die tyd dat Galileo Jupiter binnegekom het), en hulle het 'n faktor van ongeveer die benodigde kritieke massa. 100.


Jupiter se Groot Rooi Vlek Krimp Vinniger NASA - 18 Mei 2014
Aangesien dit sedert die dertigerjare krimp, lyk dit asof die grootte van die Groot Rooi Vlek net die afgelope paar jaar versnel het. Die Groot Rooi Vlek, 'n orkaan groter as die aarde, woed minstens so lank as wat teleskope dit kon sien. Soos die meeste astronomiese verskynsels, is die Groot Rooi Vlek nie voorspel of onmiddellik na die ontdekking daarvan verstaan ​​nie. Alhoewel klein wervels wat die stormstelsel binnedring, 'n rol speel, bly 'n meer volledige begrip van die reuse-stormwolk 'n onderwerp van voortgesette navorsing, en kan dit beter lei tot die weer hier op aarde. Bogenoemde beeld is 'n digitale verbetering van 'n beeld van Jupiter wat in 1979 deur die Voyager 1-ruimtetuig geneem is, terwyl dit deur die grootste planeet van die Sonnestelsel ingezoem is. NASA se Juno-ruimtetuig is tans op pad na Jupiter en sal in 2016 arriveer.

Daar is 67 mane van Jupiter. Dit gee Jupiter die grootste aantal mane met redelike veilige wentelbane van enige planeet in die Sonnestelsel. Die mees massiewe, die vier Galilese mane, is in 1610 deur Galileo Galilei ontdek en was die eerste voorwerpe wat gevind is om 'n liggaam wat nie die aarde of die son was nie. Vanaf die einde van die 19de eeu is tientalle kleiner Joviese mane ontdek wat die name gekry het van minnaars, verowerings of dogters van die Romeinse god Jupiter of sy Griekse ekwivalent Zeus. Die Galilese mane is verreweg die grootste en massiefste voorwerpe in 'n wentelbaan rondom Jupiter, met die oorblywende 63 mane en die ringe saam beslaan net 0,003% van die totale wentelmassa.

Van Jupiter se mane is agt gewone satelliete met progressiewe en byna sirkelvormige wentelbane wat nie baie geneig is ten opsigte van Jupiter se ekwatoriale vlak nie. Die Galilese satelliete is amper bolvormig vanweë die feit dat hulle 'n planetêre massa het, en dit sal dus as planete beskou word as hulle in 'n direkte wentelbaan om die Son was. Die ander vier gewone satelliete is baie kleiner en nader aan Jupiter dien dit as stofbronne van die Jupiter-ringe. Die res van die mane van Jupiter is onreëlmatige satelliete waarvan die progressiewe en retrograde wentelbane baie verder van Jupiter af is en met hoë hellings en eksentrisiteite. Hierdie mane is waarskynlik deur Jupiter van sonbane af gevang. 16 onreëlmatige satelliete is sedert 2003 ontdek en is nog nie benoem nie.


FM-radiosein opgespoor afkomstig van Jupiter's Moon Ganymedes Mysterious Universe - 14 Januarie 2021
Die sein was nie net natuurlik nie, maar die gebeurtenis was so onbeduidend dat die reaksie op die media gelewer is deur Patrick Wiggins, een van die NASA se ambassadeurs van die sonnestelsel in Utah. Dit is meer as 1000 vrywillige ambassadeurs, baie met agtergronde in wetenskap, ruimte, onderrig, ensovoorts, wat met die publiek skakel om inligting oor NASA se missies oor te dra.


'N Dosyn nuwe mane van Jupiter ontdek, waaronder een' oddball 'Science Daily - 17 Julie 2018
Twaalf nuwemane wat om Jupiter wentel, is gevind - 11 'normale' buitenmane en een wat hulle 'n 'vreemde bal' noem. Sterrekundiges het die mane die eerste keer in die lente van 2017 raakgesien terwyl hulle op soek was na voorwerpe van die sonnestelsel in die verte as deel van die jag op 'n moontlike massiewe planeet ver anderkant Pluto.


Hubble sien moontlike waterpluime uit wat op Jupiter se maan Europa PhysOrg - 26 September 2016, uitbars
Sterrekundiges wat die Hubble-ruimteteleskoop van NASA gebruik, het waterdamppluime wat van die oppervlak van Jupiter se maan Europa uitbars, afgebeeld. Hierdie bevinding versterk ander Hubble-waarnemings wat daarop dui dat die ysige maan met waterdamppluime op groot hoogte uitbars. Die waarneming verhoog die moontlikheid dat missies na Europa in staat is om die oseaan van Europa te proe sonder om deur kilometers ys te hoef te boor.


Hubble ontdek waterdampuitlaat van Jupiter se maan Europa Science Daily - 12 Desember 2013
Die NASA se Hubble-ruimteteleskoop het waterdamp waargeneem bo die ys suidpoolgebied van Jupiter se maan Europa, wat die eerste sterk bewyse gelewer het van waterpluime wat op die maanoppervlak uitbars. Daar word al vermoed dat Europa 'n vloeibare oseaan onder sy ysige kors huisves, wat die maan een van die belangrikste teikens maak in die soeke na bewoonbare wêrelde weg van die aarde af. Hierdie nuwe bevinding is die eerste waarnemingsbewys dat waterdamp van die maanoppervlak afgegooi word.


New Finding Ups the Chances of Life on Jupiter's Moon Europa Live Science - 17 November 2011
Europa, die ysige maan van Jupiter, voldoen nie aan een nie, maar aan twee van die kritieke lewensvereistes, sê wetenskaplikes. Al dekades lank het kenners geweet van die uitgestrekte ondergrondse oseaan van die maan - 'n moontlike tuiste vir lewende organismes - en nou toon 'n studie dat die oseaan gereeld toestromings ontvang van die benodigde energie vir die lewe via chaotiese prosesse naby die maanoppervlak.


Jupiter Moon's Buried Lakes roep Antarktika Live Science op - 17 November 2011
Sommige van die ysigste gebiede op aarde verskaf wetenskaplikes slegs 'n paar kilometer onder die ysige kors van die Jupiter-maan, Europa, verleidelike tikkies water. Vlekke gebreekte ys wat uniek is aan die maan, verbaas wetenskaplikes al meer as 'n dekade. Sommige het aangevoer dat dit tekens is van 'n ondergrondse oseaan wat deurbreek, terwyl ander meen dat die kors te dik is vir die water om deur te dring. Maar nuwe studies oor ysformasies in Antarktika en Ysland het leidrade gegee vir die skepping van hierdie raaiselagtige eienskappe, wat impliseer dat water nader aan die maanoppervlak is as wat voorheen gedink is.


Jupiter Moon 'hou magma-oseaan' BBC - 12 Mei 2011
Io is die vulkaniese wêreld in die Sonnestelsel en wetenskaplikes dink dat hulle nou 'n beter idee het waarom dit is. Die maan van Jupiter breek elke jaar ongeveer 100 keer meer lawa uit op sy oppervlak as die aarde. 'N Herbeoordeling van data van Nasa se Galileo-sonde dui daarop dat al hierdie aktiwiteite vanuit 'n reuse-magma-oseaan onder die kors van Io gevoer word.


Die atmosfeer van Io PhysOrg - 14 Junie 2010
Io is een van die vier mane van Jupiter wat Galileo ontdek het nadat hy sy nuwe teleskoop hemelwaarts gedraai het. Hulle het hom en sy tydgenote geskok omdat hulle getoon het dat hemelliggame ander voorwerpe as die aarde kan wentel.


Jupiter's Moon Europa het genoeg suurstof vir die lewe PhysOrg - 17 Oktober 2009
Nuwe navorsing dui daarop dat daar genoeg suurstof in die ondergrondse oseaan van Europa beskikbaar is om metaboliese prosesse wat op suurstof gebaseer is, lewenslank te vergelyk met dié op aarde. In werklikheid kan daar genoeg suurstof wees om komplekse, dieragtige organismes te ondersteun wat meer suurstof benodig as mikro-organismes.


Wetenskaplikes voltooi die eerste geologiese wêreldkaart van Jupiter se satelliet Ganymede PhysOrg - 16 September 2009
Wetenskaplikes het die eerste wêreldwye geologiese kaart van die grootste maan van die Sonnestelsel saamgestel - en sodoende nuwe bewyse versamel vir die vorming van die groot, ysige satelliet. Die kaart gee ons 'n beter begrip van die geologiese prosesse wat die maan wat ons vandag sien, gevorm het.

Die planeet Jupiter het 'n stelsel van ringe, bekend as die ringe van Jupiter of die Joviese ringstelsel. Dit was die derde ringstelsel wat in die Sonnestelsel ontdek is, na die van Saturnus en Uranus. Dit is die eerste keer in 1979 deur die ruimtesonde Voyager 1 waargeneem en in die negentigerjare deeglik ondersoek deur die Galileo-baan. Dit is ook die afgelope 23 jaar deur die Hubble-ruimteteleskoop en vanaf die aarde waargeneem. Op grondgebaseerde waarnemings van die ringe is die grootste beskikbare teleskope nodig.

Die Joviaanse ringstelsel is flou en bestaan ​​hoofsaaklik uit stof. Dit het vier hoofkomponente: 'n dik binneste torus van deeltjies, bekend as die "halo-ring", 'n relatief helder, buitengewoon dun "hoofring" en twee wye, dik en flou buitenste "gossamerringe", genoem na die mane van wie se materiaal hulle is saamgestel: Amalthea en Thebe.

Die hoof- en halo-ringe bestaan ​​uit stof wat uit die mane Metis, Adrastea en ander ongemerkte ouerliggame uitgegooi word as gevolg van hoë-snelheid-impak. Beelde met hoë resolusie wat in Februarie en Maart 2007 deur die New Horizons-ruimtetuig verkry is, het 'n ryk fyn struktuur in die hoofring onthul.

In sigbare en naby-infrarooi lig het die ringe 'n rooierige kleur, behalwe die halo-ring, wat neutraal of blou van kleur is. Die grootte van die stof in die ringe wissel, maar die dwarsdeursnee is die grootste vir nie-bolvormige deeltjies met 'n straal van ongeveer 15 um in alle ringe, behalwe die stralekrans. Die stralekrans word waarskynlik oorheers deur submikrometer stof.


Jupiter se ringe word gevorm deur wisselwerking tussen sonlig en skaduwee-wetenskaplikes daagliks - 1 Mei 2008
In 'n nuwe studie is gerapporteer dat 'n flou verlenging van die buitenste ring anderkant die baan van Jupiter se maan Thebe, en ander waargenome afwykings van 'n aanvaarde model van ringvorming, die gevolg is van die wisselwerking van skaduwee en sonlig op stofdeeltjies waaruit die ringe bestaan. Dit blyk dat die verlengde grens van die buitenste ring en die ander in Jupiter-ringe regtig in die skaduwee gemaak is.

In die Romeinse mitologie het Jupiter dieselfde rol as Zeus in die Griekse panteon vervul. Hy is geroep Juppiter Optimus Maximus Soter (Jupiter Best, Greatest, Saviour) as beskermgod van die Romeinse staat, in beheer van wette en sosiale orde. Hy was die vernaamste god van die Capitoline Triad, saam met Juno en Minerva.

Jupiter is 'n vokatiewe verbinding afgelei van argaïese Latyns Iovis en pater (Latyn vir vader), is dit ook as die nominatiewe geval gebruik. Jove is 'n Engelse formasie gebaseer op Iov-, die stam van skuins gevalle met die Latynse naam. Die Vediese ekwivalent daarvan is Dyaus Pita. Die naam van die god is ook aangeneem as die naam van die planeet Jupiter, en was die oorspronklike naamgenoot van die weekdag wat in Engels as Donderdag bekend sou staan ​​(die etimologiese wortel kan in verskillende Romaanse tale gesien word, insluitend (akkusatiewe Iovem) , genitief Iovis, datief Iovi en ablatief Iove - 'n onreëlmatige verbuiging.) Taalkundige studies identifiseer sy naam as afkomstig van die Indo-Europese verbinding "O Vader God", die Indo-Europese godheid van wie ook die Germaanse Tiwaz ontleen is (na wie Dinsdag is genoem), die Griekse Zeus, en die Franse jeudi, Castiliaanse jueves, Italiaanse gioved en Katalaanse dijous, almal uit Latyn Iovis Dies, terwyl Engels sy Noorse ekwivalent, Thor).

Die grootste tempel in Rome was die van Jupiter Optimus Maximus op die Capitolienheuwel. Hier word hy saam met Juno en Minerva aanbid en vorm die Capitoline Triad. Jupiter is ook op Capitoline Hill aanbid in die vorm van 'n klip, bekend as Iuppiter Lapis of die Jupiter Stone, wat as 'n eedsteen beëdig is. Tempels vir Jupiter Optimus Maximus of die Capitolien-triade in die algemeen is gewoonlik deur die Romeine gebou in die middel van nuwe stede in hul kolonies.

Daar is eens geglo dat die Romeinse god Jupiter in beheer was van kosmiese geregtigheid, en in antieke Rome het mense Jove in hul howe gesweer, wat gelei het tot die algemene uitdrukking "By Jove!", Wat vandag nog as 'n argaïsme gebruik word. Daarbenewens is "Jovial" 'n medium-algemene byvoeglike naamwoord wat steeds gebruik word om mense te beskryf wat vrolik, optimisties en lewendig is in temperament.

Jupiter, soos Zeus, Z, in die Griekse mitologie die koning van hemel en aarde is en van al die Olimpiese gode. Hy word soms uitgebeeld met sigsig-bliksems om mense daaraan te herinner dat die werklikheid geskep word deur elektromagnetiese energie wat die magie en misterie van ons hologram deur die roosterbewussyn na Zero Point beweeg.

In die Romeinse mitologie was Jupiter bekend as die god van geregtigheid. Hy is aangewys as koning van die gode tydens die spesiale vergadering wat gevolg het op die omverwerping van die god Saturnus (Cronus in die Griekse mitologie) en die Titane. In die raad van die gode wat gevolg het op Saturnus se omverwerping, is Jupiter gekroon as Heer van Hemel en Aarde en van al die gode. Jupiter het Neptunus die heerskappy oor die see verleen,
en sy ander broer Pluto heers oor die onderwêreld.

Vreemdelinge word waarskynlik aangetref op ysige mane van Jupiter en Saturnus, Britse wetenskaplikes stel voor dat The Telegraph - 16 April 2013
Dit volg op die oprigting van die UK Centre for Astrobiology, wat van stapel gestuur is om te ondersoek of daar lewe buite die aarde is. Die sentrum ondersoek die lewe op aarde en het 'n kilometer onder die oppervlak 'n ondergrondse laboratorium in Yorkshire opgerig om te ondersoek hoe die lewe daar oorleef en soek na aanwysers van hoe dit tot ander planete kan uitbrei, veral Mars, waar daar nou geglo word dat die lewe bestaan ​​onder die oppervlak vanweë die moeilike omstandighede.


New Finding Ups the Chances of Life on Jupiter's Moon Europa Live Science - 17 November 2011
Europa, die ysige maan van Jupiter, voldoen nie aan een nie, maar aan twee van die kritieke lewensvereistes, sê wetenskaplikes. Reeds dekades lank het kenners geweet van die uitgestrekte ondergrondse oseaan van die maan - 'n moontlike tuiste vir lewende organismes - en nou toon 'n studie dat die oseaan gereeld toestroom van die benodigde energie ontvang vir lewe via chaotiese prosesse naby die maanoppervlak.

Een pseudowetenskapsteorie sê dat die lewe in Europa met mekaar verband hou
na dolfyne op planeet Aarde, kommunikasie via telepatiese toon.


Jupiter is the method each of us has for dealing with the laws of life, our Saturn or limitations. The Hindu word for Jupiter is Guru and this planet indicates our particular Dharma, the way we can solve the problems that confront us. Thus Jupiter has to do with our vocation, the way in which we can be successful. Jupiter is the light or path. The largest planet in the solar system, Jupiter represents the principles of growth and expansion.

Sagittarius is a mutable fire sign ruled by Jupiter.

In Roman mythology, Jupiter held the same role as Zeus in the Greek pantheon. Zeus is Z aka Zoroaster which takes us to the Anunnaki, Thoth, and others including Jesus depending on which storyline (myth) you are referencing. One soul played all the roles.


First-of-its-kind study finds lightning impacts edge of space in ways not previously observed

A solar flare erupted on the far side of the sun on June 4, 2011. Credit: NASA/STEREO/Helioviewer

Solar flares jetting out from the sun and thunderstorms generated on Earth impact the planet's ionosphere in different ways, which have implications for the ability to conduct long range communications.

A team of researchers working with data collected by the Incoherent Scatter Radar (ISR) at the Arecibo Observatory, satellites, and lightning detectors in Puerto Rico have for the first time examined the simultaneous impacts of thunderstorms and solar flares on the ionospheric D-region (often referred to as the edge of space).

In the first of its kind analysis, the team determined that solar flares and lightning from thunderstorms trigger unique changes to that edge of space, which is used for long-range communications such the GPS found in vehicles and airplanes.

The work, led by New Mexico Tech assistant professor of physics Caitano L. da Silva was published recently in the journal Scientific Reports, a journal of the Nature Publishing Group.

"These are really exciting results," says da Silva. "One of the key things we showed in the paper is that lightning- and solar flare-driven signatures are completely different. The first tends to create electron density depletions, while the second enhancements (or ionization)."

While the AO radar used in the study is no longer available because of the collapse of AO's telescope in December of 2020, scientists believe that the data they collected and other AO historical data will be instrumental in advancing this work.

"This study helps emphasize that, in order to fully understand the coupling of atmospheric regions, energy input from below (from thunderstorms) into the lower ionosphere needs to be properly accounted for," da Silva says. "The wealth of data collected at AO over the years will be a transformative tool to quantify the effects of lightning in the lower ionosphere."

Better understanding the impact on the Earth's ionosphere will help improve communications.

da Silva worked with a team of researchers at the Arecibo Observatory (AO) in Puerto Rico, a National Science Foundation facility managed by the University of Central Florida under a cooperative agreement. The co-authors are AO Senior Scientist Pedrina Terra, Assistant Director of Science Operations Christiano G. M. Brum and Sophia D. Salazar a student at NMT who spent her 2019 summer at the AO as part of the NSF- supported Research Undergraduate Experience. Salazar completed the initial analysis of the data as part of her internship with the senior scientists' supervision.

"The Arecibo Observatory REU is hands down one of the best experiences I've had so far," says the 21-year-old. "The support and encouragement provided by the AO staff and REU students made the research experience everything that it was. There were many opportunities to network with scientists at AO from all over the world, many of which I would likely never have met without the AO REU."

AO's Terra and Brum worked with Salazar taking her initial data analysis, refining it and providing interpretation for the study.

"Sophia's dedication and her ability to solve problems grabbed our attention from the very first day of the REU program," Brum says. "Her efforts in developing this project resulted in publication in one of the most prestigious journals in our field."

"Another remarkable result of this work is that for the first time, a mapping of the spatial and seasonal occurrence of lightning strike over the region of the Puerto Rico archipelago is presented," Brum says. "Intriguing was also the detection of a lighting activity hotspot concentrated in the western part of La Cordillera Central mountain range of Puerto Rico."


How lightning strikes could explain the origin of life—on Earth and elsewhere

Johannes Plenio/Pexels

The search for life on other planets is a lot like cooking. (Bear with me for a second.) You can have all the ingredients in one place—water, a warm climate and thick atmosphere, the proper nutrients, organic material, and a source of energy—but if you don’t have any processes or conditions that can actually do something with those ingredients, you’ve just got a bunch of raw materials going nowhere.

So sometimes, life needs a spark of inspiration—or maybe several trillion of them. A new study published in Nature Communications suggests lightning may have been a key component in making phosphorus available for organisms to use when life on Earth first appeared by about 3.5 billion years ago. Phosphorus is essential for making DNA, RNA, ATP (the energy source of all known life), and other biological components like cell membranes.

“This study was actually a lucky discovery,” says Benjamin Hess, a Yale University researcher and lead author of the new paper. “It opens up new possibilities for finding life on Earth-like planets.”

This isn’t the first time lightning has been suggested as a vital part of what made life possible on Earth. Lab experiments have demonstrated that organic materials produced by lightning could have included precursor compounds like amino acids (which can join to form proteins).

This new study discusses the role of lightning in a different way, though. A big question scientists have always pondered has to do with the way early life on Earth accessed phosphorus. Although there was plenty of water and carbon dioxide available to work with billions of years ago, phosphorus was wrapped up in insoluble, unreactive rocks. In other words, the phosphorus was basically locked away for good.

How did organisms get access to this essential element? The prevailing theory has been that meteorites delivered phosphorus to Earth in the form of a mineral called schreibersite—which can dissolve in water, making it readily available for life forms to use. The big problem with this idea is that when life began over 3.5 to 4.5 billion years ago, meteorite impacts were declining exponentially. The planet needed a lot of phosphorus-containing schreibersite to sustain life. And meteorite impacts would also have been destructive enough to, well, kill off nascent life prematurely (see: the dinosaurs) or vaporize most of the schreibersite being delivered.

Hess and his colleagues believe they have found the solution. Schreibersite is also found in glass materials called fulgurites, which are formed when lighting hits Earth. When fulgurite forms, it incorporates phosphorus from terrestrial rocks. And it’s soluble in water.

The authors of the new study collected fulgurite that had been produced by lighting hitting the ground in Illinois in 2016, initially just to study the effects of extreme flash heating as preserved in these kinds of samples. They found that the fulgurite sample was made of 0.4% schreibersite.

From there it was just a matter of calculating how much schreibersite could have been produced by lightning billions of years ago, around the time the first life emerged on Earth. There’s a wealth of literature estimating ancient levels of atmospheric carbon dioxide, a contributing factor to lightning strikes. Armed with an understanding of how carbon dioxide trends correlate with lightning strikes, the team used that data to determine how much lightning would have been prevalent back then.

Hess and colleagues determined that trillions of lightning strikes could have produced 110 to 11,000 kilograms of schreibersite every year. Over that amount of time, this activity should have made enough phosphorus available to encourage living organisms to grow and reproduce—and much more than would have been produced through meteorite impacts.

This is interesting stuff for understanding Earth’s history, but it also opens up a new view for thinking about life elsewhere. “This is a mechanism that may work on planets where meteorite impacts have become rare,” says Hess. This life-through-lightning model is limited to environments with shallow waters—lightning must produce fulgurite in areas where it can dissolve properly to release the phosphorus, but where it won’t become lost in a vast body of water. But this limit may not necessarily be a bad thing. At a time when astrobiology is obsessed with ocean worlds, the study puts the focus back on places like Mars that haven’t been submerged in global waters.

To be clear, the study doesn’t suggest that meteorite impacts play no role in making phosphorus accessible to life. And Hess emphasizes that other mechanisms, like hydrothermal vents, may simply bypass the need for either meteorites or lightning.

And lastly, over 3.5 billion years ago Earth didn’t look the way it does today. It’s not completely clear there was enough rock exposed to the air—where it could be hit by lightning and lead to schreibersite production—to make phosphorus available.

Hess is going to let other scientists handle those questions, since the study lies outside his normal work. “But I do hope this will make people pay attention to fulgurites, and test these mechanisms' viability further,” he says. “I hope our research will help us as we consider whether to search for life in shallow water environments, as we currently are on Mars.”


Is or might there be lightning on Io? - Sterrekunde

Weather Briefly: Lightning. Watch on the NOAA Weather Partners YouTube Channel»

What is lightning? Lightning is a giant spark of electricity in the atmosphere between clouds, the air, or the ground. In the early stages of development, air acts as an insulator between the positive and negative charges in the cloud and between the cloud and the ground. When the opposite charges build up enough, this insulating capacity of the air breaks down and there is a rapid discharge of electricity that we know as lightning. The flash of lightning temporarily equalizes the charged regions in the atmosphere until the opposite charges build up again.

Lightning can occur between opposite charges within the thunderstorm cloud (intra-cloud lightning) or between opposite charges in the cloud and on the ground (cloud-to-ground lightning).

Lightning is one of the oldest observed natural phenomena on earth. It can be seen in volcanic eruptions, extremely intense forest fires, surface nuclear detonations, heavy snowstorms, in large hurricanes, and obviously, thunderstorms. . What we do: Read more about NSSL's lightning research here. What causes thunder? Lightning causes thunder! Energy from a lightning channel heats the air briefly to around 50,000 degrees Fahrenheit, much hotter than the surface of the sun. This causes the air to explode outward. The huge pressure in the initial outward shock wave decreases rapidly with increasing distance and within ten yards or so has become small enough to be perceived as the sound we call thunder.

Thunder can be heard up to 25 miles away from the lightning discharge, but the frequency of the sound changes with distance from the lightning channels that produce it, because higher frequencies are more quickly absorbed by the air. Very close to lightning, the first thunder you hear is from the closest channels,which produce a tearing sound, because that thunder contains high frequencies. A few seconds later, you hear a sharp click or loud crack from lightning channels a little farther away, and several tens of seconds later the thunder from the most distant part of a flash has quieted to low frequency rumbling.

Because light travels through the air roughly a million times faster than sound does, you can use thunder to estimate the distance to lightning. Just count the number of seconds from the time you see a flash until you hear lightning. Sound travels approximately one fifth of a mile per second or one third of a kilometer per second, so dividing the number of seconds by 5 gives the number of miles to the flash and dividing by 3 gives the number of kilometers. In what parts of the world does lightning usually strike? Lightning strikes the ground somewhere in the U.S. nearly every day of the year. Thunderstorms and lightning occur most commonly in moist warm climates. Data from the National Lightning Detection Network shows that over the continental U.S. an average of 20,000,000 cloud-to-ground flashes occur every year. Around the world, lightning strikes the ground about 100 times each second, or 8 million times a day.

In general, lightning decreases across the U.S. mainland toward the northwest. Over the entire year, the highest frequency of cloud-to-ground lightning is in Florida between Tampa and Orlando. This is due to the presence, on many days during the year, of a large moisture content in the atmosphere at low levels (below 5,000 feet), as well as high surface temperatures that produce strong sea breezes along the Florida coasts. The western mountains of the U.S. also produce strong upward motions and contribute to frequent cloud-to-ground lightning. There are also high frequencies along the Gulf of Mexico coast, the Atlantic coast in the southeast U.S. Regions along the Pacific west coast have the least cloud-to-ground lightning. --> Where does lightning strike? Most, if not all, lightning flashes produced by storms start inside the cloud. If a lightning flash is going to strike ground, a channel develops downward toward the surface. When it gets less than roughly a hundred yards of the ground, objects like trees and bushes and buildings start sending up sparks to meet it. When one of the sparks connects the downward developing channel, a huge electric current surges rapidly down the channel to the object that produced the spark. Tall objects such as trees and skyscrapers are more likely than the surrounding ground to produce one of the connecting sparks and so are more likely to be struck by lightning. Mountains also make good targets. However, this does not always mean tall objects will be struck. Lightning can strike the ground in an open field even if the tree line is close by. What causes lightning? The creation of lightning is a complicated process. We generally know what conditions are needed to produce lightning, but there is still debate about exactly how a cloud builds up electrical charges, and how lightning forms. Scientists think that the initial process for creating charge regions in thunderstorms involves small hail particles called graupel that are roughly one quarter millimeter to a few millimeters in diameter and are growing by collecting even smaller supercooled liquid droplets. When these graupel particles collide and bounce off of smaller ice particles, the graupel gains one sign of charge and the smaller ice particle gains the other sign of charge. Because the smaller ice particles rise faster in updrafts than the graupel particles, the charge on ice particles separates from the charge on graupel particles, and the charge on ice particles collects above the charge on graupel.

Laboratory studies suggest that graupel gains positive charge at temperatures a little colder than 32 degrees Fahrenheit, but gains negative charge at colder temperatures a little higher in the storm. Scientists think the two largest charge regions in most storms are caused mainly by graupel carrying negative charge in the middle of the storm and ice particles carrying gained positive charge in the upper part of the storm. However, a small positive charge region often is below the main negative charge region from graupel gaining positive charge at lower, warmer altitudes. Small ice particles that have collided with negative graupel in the lower region can contribute positive charge to the middle of the storm.

A conceptual model shows the electrical charge distribution inside deep convection (thunderstorms), developed by NSSL and university scientists. In the main updraft (in and above the red arrow), there are four main charge regions. In the convective region but outside the outdraft (in and above the blue arrow), there are more than four charge regions.

You can read more about lightning at the National Weather Service's JetStream Online School for Weather. How is electrical charge distributed through a thunderstorm?

Charge distribution in storm clouds [+]

What we do: NSSL researchers use a 3-D cloud model to investigate the full life-cycle of thunderstorms. The model has shown how graupel or other droplets could help form regions of lower charge within the storm.

NSSL team launches an instrumented weather balloon to study lightning in northern Florida. [+]

NSSL researchers were pioneers in the science of launching instrumented weather balloons into thunderstorms. This capability allowed NSSL to collect weather data in the vicinity of tornadoes and drylines, and all the way up through a thunderstorm, gathering critically needed observations in the near-storm environment of thunderstorms. In addition, these mobile labs and ballooning systems provided the first vertical profiles of electric fields inside a thunderstorm leading to a new conceptual model of electrical structures within convective storms.

One way researchers test their theories is by making measurements of severe thunderstorms in the field and later analyzing the results. Large-scale field experiments involving many instruments with a primary focus on atmospheric electricity include the Deep Convective Clouds and Chemistry experiment (DC3), the MCS Electrification and Polarimetric Radar Study, the Severe Thunderstorm Electrification and Precipitation Study and the Thunderstorm Electrification and Lightning EXperiment.


2022 Ford F-150 Lightning is an electric pickup that can power your house for days

Intelligent Backup Power can send juice from the Lightning's battery into your home's electrical system in a blackout, no extension cords required.

The 2022 Ford F-150 Lightning electric pickup truck is packed with surprises and groundbreaking innovations, from its independent rear suspension to the Mega Power Frunk (which offers more cargo space than a Toyota Corolla sedan), to its unbelievably low starting price. But arguably, this EV's most significant innovation is its ability to run your entire home during a blackout.

Believe it or not, this battery-powered truck can really power your house when the lights go out, and better still, doing so won't require a rat's nest of extension cords or even a portable generator. What Ford calls Intelligent Backup Power enables this all-electric rig to feed power from its enormous battery pack through its hardwired wall charger directly into your home's electrical system.

As you might suspect, electric cars store positively enormous amounts of energy in their batteries. After all, it takes a lot of juice to move a multi-ton vehicle at interstate speeds for hundreds of miles. When it goes on sale next year, the new Lightning will offer two battery pack sizes, the smaller of which should provide 230 miles of range and the bigger one about 300. Ford hasn't said how large these electron reservoirs are, but we're estimating they'll clock in at roughly 110 and 150 kWh, respectively.

The F-150 Lightning can provide up to 9.6 kW of power output. According to Ford , that's more than enough to fully power a house at any one time, and considering the size of the battery, it could do that for at least three days (based on a daily average of 30 kWh). The automaker says you can make that power last for up to 10 days if you ration the electricity accordingly. Kind of like hypermiling for your home.

/> Enlarge Image

Ford's Lightning can provide up to 9.6 kW of electricity, enough to run a home for up to 10 days if you're careful.

Provided the Lightning is plugged in, Ford's Intelligent Backup Power system works automatically (though you can manually configure it if you prefer), switching on when there's an electrical interruption. It feeds power from the truck's prodigious battery pack back to the 80-amp, 240-volt home charger, then the juice gets routed to an inverter, which magically transforms it from DC to AC, and finally that sweet, sweet electricity gets routed to all the plugs, lights and appliances in your home. It's pretty neat stuff.

Later, the F-150 Lightning will also be able to power your house during the day when electricity rates are higher and then recharge overnight when the juice costs less. This has the potential to significantly reduce owners' electricity bills.

All of this capability is similar to the F-150 hybrid's Pro Power Onboard system available in its 2021 model-year gas F-150s. (You may recall that some of Ford's trucks saved the day during Texas' frigid blackout back in February). Of course, PPO cannot feed juice back through a building's electrical system. If you want to keep your freezer from thawing like the icecaps and the internet modem up and running, you'd better have some power strips and extension cords handy, because you have to plug everything directly into the hybrid F-150. Or, of course, you can just upgrade to the new Lightning and it will do all that automatically.

With 775 pound-feet of torque on tap and a base price of around $40,000 before any state or federal tax credits, this all-electric F-150 seems like a groundbreaking, industry-changing product. Intelligent Backup Power is just another killer feature that could put the Lightning ahead of competing all-electric pickups from companies like Hummer , Rivian and Tesla .


Ford F-150 Lightning Can Keep the Lights On When Your Power Goes Out

The electric F-150 will be able to double as a home power station when it's not doing truck things.

  • The 2022 Ford F-150 Lightning will be able to power a home for up three days when connected to Ford's available Charge Station Pro, Ford says.
  • The wall unit will require a 100-amp circuit, which could prove costly.
  • The F-150 Lightning will arrive at dealers next spring and will start around $42,000.

When the electric Ford F-150 Lightning isn't blasting to 60 mph in a claimed 4.5 seconds or doing truck things with up to 10,000 pounds in tow, it will be able to act as a knight in painted aluminum in the event of a natural disaster or power outage by feeding its stored energy back into owners' homes.

In previous experiments, we've powered a house and also fed some juice to a Ford Mustang Mach-E using the 7.6 kW available from the bed-mounted plugs of the F-150 Hybrid. Similarly, GMC recently announced the 2024 Hummer will be capable of bleeding 6.6 kW from its Ultium battery pack. The Lightning will take it to the next level. Ford's 80-amp Charge Station Pro with Intelligent Backup Power features a CCS charging plug, which is the type found at Level 3 fast chargers. When connected to the Charge Station Pro, optional with the Standard Range battery but standard with the Extended Range pack, the F-150 Lightning can feed 9.6 kilowatts of power through the CCS plug's larger bottom ports, through the Charge Station Pro, and back into a home's power panel. When power is restored to the grid, the Charge Station Pro reverts to replenishing the Lightning's battery.

Ford claims that based on the national average of a home using 30.0 kWh per day, the Extended Range battery can supply a home for up to three days. Ford has yet to release the official capacity of the batteries, but we predict Ford will have some baked-in fail-safes to prevent the Lightning from being fully depleted while powering your hot tub. At a later date, Ford will reveal Ford Intelligent Power, which will use the Lightning's stored energy during high-cost and peak energy hours. When there's less strain on the grid during overnight hours and costs are lower, the Charge Station Pro will then recharge the Lightning.

With the 80-amp Charge Station Pro comes a yet-to-be-determined cost of installing the trick charging unit. For one, Ford has not announced how much the option will be for trucks equipped with the smaller battery pack.

There's also the complexity of actually feeding the station enough power. Most modern homes are constructed around a 240-volt and 200-amp feed from the power companies. When factoring in 30-amp draws from an air conditioner, drying machine, water heater, and anything else pulling power, there's not enough juice left to feed the 100-amp circuit required to supply the Charge Station Pro. Older homes may only have 100 amps supplied to the entire service panel. A solution for this is costly: upgrade, or add an additional service line supplied by the power company, which can vary wildly depending on location. Also, a transfer switch will be required to backfill the home's power supply. Ford has announced a partnership with solar supplier Sunrun to help with installation and home integration, but details have yet to be released.


Electrek’s Take

This is an interesting development and an important distinction to make when it comes to range.

It could even become a new way to advertise range for electric pickup trucks, or at least, it’s something to consider.

Pickup trucks are often used for work and carrying cargo. It’s fair to share range based on cargo capacity.

At same time, a lot of people buy pickup trucks and use them 90% of the time as a regular passenger vehicle to transport little to no cargo.

Now range estimates are already hard to make due to all the variables and adding cargo, as a new one will only complicate things, but I’d argue that it’s one that automakers should consider for their advertised range.

Wat dink jy? Let us know in the comment section below.

FTC: We use income earning auto affiliate links. More.


Ford F-150 Lightning may drive further per charge than expected

One of the most exciting vehicle announcements in recent months has been the new F-150 Lightning electric pickup. Ford promised the version of the truck with the larger battery pack would go about 300 miles per charge. There’s some evidence that suggests Ford might be sandbagging on the driving range, and the vehicle is good for significantly longer drive times between charge ups.

According to YouTuber Marques Brownlee, the F-150 Lightning might offer up to 460 miles of driving range per charge. Recently, Brownlee was able to get his hands on a preproduction Lightning for a video, which can be seen below. According to Brownlee, the 300-mile driving range of the Lightning is quoted with 1000 pounds of payload in the bed.

It’s worth noting that tidbit about the 1000 pounds of payload in bed comes from Brownlee, not Ford. However, Brownlee does show on the video that the truck he is driving has 367 miles available range according to the dash display with about 80 percent of its battery capacity available. It’s worth keeping in mind that as with any range estimates from onboard electronics on modern cars today, it depends on how you drive the vehicle.

However, any way you slice it, a range of 367 miles with only 80 percent of the battery capacity left certainly suggests Ford is underquoting driving range. Another potential caveat is that the truck Brownlee uses in his video is the top-of-the-line Platinum with the extended range battery pack. Ford may not be underpromising on other trims.

It’s certainly possible that Ford might be sandbagging with the standard range battery pack as well only time will tell. Ford will undoubtedly attract significant numbers of EV buyers with the electric F-150, particularly fleet operators with trucks that are driven short distances within cities. In fact, one version of the truck is aimed at fleet operators and those working out of the electric pickup.


Ford CEO: F-150 Lightning has nearly 45,000 reservations

Less than two days since Ford Motor Co.'s unveiling of an electric version of its best-selling pickup truck, the automaker said it already had received nearly 45,000 reservations for F-150 Lightning.

Ford CEO Jim Farley said Friday on Twitter that the company had received more than 44,500 reservations. Ford opened up reservations Wednesday night upon the reveal, allowing customers to put down a $100 deposit to reserve a truck. They will later be asked to place an actual order.

More than 44,500 reservations in less than 48 hours. and counting. The future is here: https://t.co/pbgGgnTVrS#F150Lightningpic.twitter.com/mpAztdfXZX

— Jim Farley (@jimfarley98) May 21, 2021

The update came after Farley told CNBC Thursday that the Dearborn automaker had netted about 20,000 reservations from Wednesday night to Thursday morning.

The Blue Oval revealed F-150 Lightning Wednesday night, to much fanfare, via a livestreamed event from Ford World Headquarters. The unveiling followed President Joe Biden's visit Tuesday to the Rouge Electric Vehicle Center, where union workers will build the electric truck beginning next spring.

Among the details revealed this week about the electric version of America's best-selling truck: the price starts at $39,974, it targets an estimated EPA range of up to 300 miles with an extended battery range option, and features what Ford is billing as the industry's largest "frunk," or front trunk.

Ford reveals the F-150 Lightning electric pickup projected on the side of Ford World Headquarters in Dearborn, Mich. on May 19, 2021. (Photo: Robin Buckson, The Detroit News)

Jessica Caldwell, executive director of insights for Edmunds.com, said there are a few reasons prospective customers might be pre-ordering F-150 Lightning in such high numbers.

"One, it's a high-volume vehicle, and two, truck inventory has been pretty low recently," she said. A global shortage of semiconductor chips has hit auto production worldwide, crimping inventories and vehicle options on dealer lots.

"So if you're thinking about buying a truck or you're interested, $100 is a low barrier to entry to get on a list for something that you may really want next year," said Caldwell.

And, she noted, electric trucks are a brand-new segment. Consumers may be interested in getting behind the wheel of a cutting-edge vehicle, and some may be reserving electric trucks from multiple manufacturers that are slated to roll them out in the coming months, so they can leave their options open for now.