Sterrekunde

Die wegdrywing van die Maan se ekwatoriale rotasiesnelheid

Die wegdrywing van die Maan se ekwatoriale rotasiesnelheid


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Is daar enige aanhaling of dokumentasie wat die gemete agteruitgang van die Maan se ekwatoriale rotasiesnelheid toon (wat sodoende die maan se aksiale rotasie beïnvloed)?

Ek is op soek na die drywing van die rotasiesnelheid van die maan as, vermoedelik meer as 10.000 jaar of langer.


Aangesien die maan getyd op die aarde gesluit is, draai dit met dieselfde wenteltyd as wat dit om die aarde wentel. Om die rotasiesnelheid van die maan op te spoor, is dus dieselfde as om die veranderinge in sy baan te meet - as u die een ken, dan ken u die ander.

Die resessie van die maan is gemeet met behulp van 'n laserafstand (sien skakels in die antwoord op hierdie vraag) tot ongeveer 3,8 cm / jaar. Vanuit die tempo van verandering van die halfas van die baan, kan u die derde wet van Kepler gebruik om 'n veranderingstempo van die wentelperiode van die Maan en dus die rotasieperiode daarvan uit te werk.


Cassini se wette

Wet 2 stel dat die hoek,, ondertussen tussen en vasgestel is. Omdat die hoeke en albei klein is (as dit in radiale uitdrukking voorkom), lei ons af dat die vektore en amper parallel is met.

Wet 3 stel dat die vektore, en almal in dieselfde vlak lê, met en aan weerskante van. Met ander woorde, as die normale om die baan van die Maan, regressief, terugval ongeveer die normale tot die ekliptiese vlak,, die normale tot die ekwatoriale vlak van die Maan, val dieselfde tempo af, sodat dit altyd direk teenoorgestelde is t.o.v.

Die eerste wet van Cassini is in die vorige afdeling vervat. Die uiteindelike doel van hierdie afdeling is om Cassini se tweede en derde wette te verantwoord. Ons benadering is grotendeels gebaseer op die van Danby (1992). Om die analise te vereenvoudig, aanvaar ons dat die maan om die aarde wentel, met die eenvormige hoeksnelheid, in 'n sirkelvormige wentelbaan. As dit uitgedruk word in terme van die koördinaatstelsel,. Verder kan ons skryf omdat die eenheidsvektore en amper parallel daarmee is

waar,,,. Net so, omdat ons die eenheidsvektor amper parallel aan die -as het, het ons

waar,. Die posisievektor,, van die middelpunt van die Aarde met betrekking tot die middelpunt van die Maan word geskryf

Ten slotte, gegewe Cassini se eerste wet, en as ons aanneem dat die maan se draai-as amper parallel aan die -as is, neem die maan se draai-hoeksnelheid die vorm aan

Hier is 'n eenheidsvektor sodanig dat

Let daarop dat die maan feitlik sferies simmetries is. Na tweede orde in klein hoeveelhede lewer vergelykings (8.196) en (8.197) op

waar gebruik gemaak is van Vergelykings (8.192) - (8.195).

Die eenheidsvektor is stilstaande in 'n traagheidsraam waarvan die koördinaatasse ten opsigte van verre sterre vasgestel is. Daarom het ons in die,, liggaamsraam, wat met die hoeksnelheid ten opsigte van die voorgenoemde vaste raam draai (sien Afdeling 6.2)

Dit volg uit Vergelykings (8.190), (8.194) en (8.195) dat

Hierdie uitdrukkings kan gekombineer word met vergelykings (8.200) en (8.201) om te gee

Dit bly nou om uit te druk in terme van en.

Per definisie is dit normaal, aangesien die vektor in die vlak van die maanbaan lê. Daarom, volgens vergelykings (8.191) en (8.192),

Laat die stygende knoop wees van die Aarde se skynbare wentelbaan om die Maan (wat impliseer dat dit die aflopende knooppunt is van die werklike baan van die Maan om die Aarde), en laat dit 'n eenheidsvektor wees wat parallel is met. (Sien Figuur 8.13 en Afdeling 4.12.) Per definisie is dit normaal vir beide en. In werklikheid kan ons skryf

waar is die hoek tussen die vektore en. Dit volg uit Vergelykings (8.190), (8.191), en die feit dat dit klein is

waar is die hoek tussen en. (Sien Figuur 8.13.) Vergelykings (8.191), (8.192) en (8.210) lewer dus op

In werklikheid is die lengte van die aarde relatief tot die stygende knooppunt van sy skynbare baan om die maan. Dit volg daarop

waar is die eenvormige regressiesnelheid van die Aarde se skynbare stygende knoop (wat dieselfde is as die regressiesnelheid van die ware stygende knoop van die Maan se wentelbaan om die Aarde). Hier, ter wille van eenvoud, het ons aanvaar dat die Aarde op sy tyd deur sy skynbare stygende knoop gaan. Daarom kan vergelykings (8.205), (8.206), (8.208), (8.213) en (8.216) gekombineer word om

Die vorige twee vergelykings reguleer die maan se fisiese vibrasie op breedtegraad. Soos in die lengte-librasie, is daar 'n vrye en gedwonge modus. Die gratis modi bevredig

Kom ons soek oplossings vir die vorm

waar,, is konstantes. Dit volg daarop

Aangesien albei klein is in vergelyking met eenheid, kan twee onafhanklike vrye librasie-modusse afgelei word van die voorafgaande uitdrukking. Die eerste modus is so dat en, terwyl die tweede so is dat en. In die maan se liggaamsraam veroorsaak hierdie modi dat die normale na die ekliptiese vlak, op die normale na die ekwatoriale vlak van die maan, op so 'n manier dat

waar,,,, en die konstantes,,, arbitrêr is. Die waargenome waardes van,, en is per dag, en, onderskeidelik (Konopliv et al. 1998 Dickey et al. 1994). [Eintlik, en word gemeet aan die hand van waarnemings van maanlibrasie verkry vanaf laser wat wissel tot die teorie wat hier beskryf word.] Dit volg dus dat per dag, per dag, en. In die liggaamsraam laat die eerste modus met 'n periode van dae agteruitgaan, terwyl die tweede modus met 'n tydperk van jare voortduur. Albei hierdie maniere van librasie is opgespoor deur middel van maanlaser wat wissel. Die gemete amplitude van die eerste modus is, terwyl die van die tweede modus is (Jin en Li 1996). Terloops, die tweede modus is baie soortgelyk aan die Chandler-wankeling van die aarde. (Kyk Afdeling 8.8.) Let daarop dat indien en met die teenoorgestelde teken was - dit wil sê as die tussenligging tussen - en die tweede manier van librasie mettertyd eksponensieel sou groei, eerder as om met 'n konstante amplitude te ossilleer: met ander woorde, die Moon se draai-toestand sou onstabiel wees. In werklikheid is die hoofas van die rotasie van die Maan so gerig dat < cal I> _> < kal I> _$ ->, wat verseker dat die maan op 'n stabiele manier draai.

Kom ons soek nou geforseerde oplossings van vergelykings (8.217) en (8.218) van die vorm

waar, is konstantes. Dit volg daarop

Daarom, as ons onthou dat, en almal klein is in vergelyking met eenheid, verkry ons die volgende modus van gedwonge librasie:

In die maan se liggaamsraam, veroorsaak hierdie modus die vektore en daal ongeveer (d.w.s. die -as) op so 'n manier dat

en gebruik is gemaak van vergelykings (8.213), (8.214) en (8.216). Omdat die waargenome waardes van, en is, en (Konopliv et al. 1998 Dickey et al. 1994 Yoder 1995), lei ons af dat


Polêre belyning met behulp van dryfmetode

Om 'n astronomiese teleskoop op die son, maan en sterre te hou, moet dit op 'n ekwatoriale berg gemonteer word. Daar is verskillende soorte ekwatorstukke, maar die algemeenste is die Duitse ekwatoriale berg (GEM) en die gaffel-ekwatoriale berg (FEM). Die ekwatoriale houer moet toegerus wees met 'n motor- of klokaandrywing wat die hele berg een keer elke vier-en-twintig uur om sy poolas draai.

Wanneer die poolas parallel met die rotasie-as van die Aarde gerig is, sal die klokaandrywing die rotasie van die aarde vergoed en uitskakel, sodat die teleskoop op enige astronomiese voorwerp gerig sal bly. 'N Vinnige en maklike manier om rowwe polêre belyning te bereik, is soos volg.

Draai eers die optiese buis van die teleskoop sodat dit parallel is met die poolas van die ekwatoriale berg. As die houer sirkels het. dit kan bereik word deur die teleskoop te draai totdat die deklinasie sirkel 90 grade Noord (of 90 grade Suid in die Suidelike Halfrond) lees. Verander dan die hoogte- en azimut-instellings van die ekwatoriale berg sodat die ster Polaris op die dwarshare van die teleskoop se teleskoop verskyn (gebruik die ster Sigma Octanis in die Suidelike Halfrond). Dit sal 'n polêre belyning lewer wat goed genoeg is vir visuele gebruik en kort blootstellingsfotografie.

As 'n lang blootstelling fotografie ('n paar minute of langer) beplan word, is 'n beter polêre belyning nodig. Die Drift Alignment metode is een manier om dit te bereik.

'N Oogstuk met verligte dwarshare of 'n draadkoord is nodig vir die Drift Alignment metode. Voer eers 'n vinnige belyning uit met die bogenoemde prosedure. Kies vervolgens 'n helder ster binne twintig grade van die hemelse ewenaar en binne 'n uur in RA van die Meridiaan. Sit die ster in die middel van die kruishare. Stel die teleskoop stadig-bewegingsbeheer in Declination reg, en kyk hoe die ster in die okular beweeg. U moet die okulariteit draai sodat die kruishare in lyn is met die noord-suid-beweging van die teleskoop. Dit kan verskillende herhalings duur tussen aanpassings in die slow motion en die draai van die oogstuk.

Die ooghaarkruishare is nou georiënteer met die noord-suid- en oos-wes-bewegings van die teleskoop en ster. Sit die ster op die kruishare en laat die teleskoop dop

vyf minute sonder om enige regstellings aan te bring. Ignoreer enige wegdrywing in die oos-wes rigting. As die ster NOORD dryf ten opsigte van die kruishare, wys die teleskoopasimut WES van NOORD. Gebruik die azimutaanpassing op die berg om dit 'n klein hoeveelheid na die OOS toe te draai. As die ster SUID dryf ten opsigte van die kruishare, wys die teleskoopasimut OOS-NOORD. Gebruik die azimutaanpassing op die berg om dit 'n klein hoeveelheid na die WES te draai.

Nadat u 'n klein azimut-regstelling gemaak het, gebruik u die teleskoop RA en Dec-knoppies om die ster weer op die kruishare te plaas en wag nog vyf minute. Let weereens op die drywing NOORD of SUID van die kruishare en maak die teleskoopasimut reg soos hierbo beskryf. Herhaal hierdie proses totdat daar geen (of baie min) wegdrywing in die NOORD-SUID-rigting is. As dit bereik is, wys die azimut van die teleskoop nou op die NOORD.

Dit is nou tyd om die hoogte van die pool-as van die teleskoop te toets en reg te stel. Kies 'n helder ster binne twintig grade van die hemelse ewenaar en binne twintig grade van die oostelike horison. Sit die ster op die kruishare en laat die teleskoop vyf minute lank spoor sonder om enige regstellings aan te bring. Ignoreer enige wegdrywing in die oos-wes rigting. As die ster NOORD dryf ten opsigte van die kruishare, is die hoogte van die polêre as van die teleskoop te HOOG. Gebruik die hoogte-aanpassing op die berg om die hoogte van die pool-as 'n bietjie te VERLAAT. As die ster SUID dryf ten opsigte van die dwarshare, is die hoogte van die polêre as van die teleskoop te laag. Gebruik die hoogteverstelling op die berg om die hoogte van die poolas VERHOOG 'n klein hoeveelheid.

Herhaal die dryftoets 'n paar keer vir hoogte totdat die wegdrywing uitgeskakel is (of baie klein). Die teleskoop is nou poolgerig. Die laaste dryfproses vir die hoogte van die polêre as van die teleskoop kan ook met 'n ster naby die westelike horison uitgevoer word, eerder as die oostelike horison. In hierdie geval is die HOË / LAAG regstellings teenoor die wat vir die oostelike horison geval gegee word.

As die teleskoop suid van die ewenaar opgestel word, word die teleskoopkorreksies in azimut van die Noordelike Halfrond omgekeer. Die onderstaande tabelle gee 'n opsomming van die regstellings in elke halfrond.

Polêre belyning - Noordelike Halfrond
Sterrigting Beskrywing
Meridiaan Ster dryf NOORD, draai teleskoop azimut OOS
Ster dryf SUID, draai teleskoop azimut-WES
Oostelike Horison Ster dryf NOORD, verstel die teleskoophoogte ONDER
Ster dryf SUID, verstel teleskoophoogte HOËR
Western Horizon Ster dryf NOORD, verstel teleskoophoogte HOËR
Ster dryf SUID, verstel teleskoophoogte ONDER
Polêre belyning - Suidelike Halfrond
Sterrigting Beskrywing
Meridiaan Ster dryf NOORD, draai teleskoop azimut OOS
Ster dryf SUID, draai teleskoop azimut-WES
Oostelike Horison Ster dryf NOORD, verstel teleskoophoogte HOËR
Ster dryf SUID, verstel teleskoophoogte ONDER
Western Horizon Ster dryf NOORD, verstel die teleskoophoogte ONDER
Ster dryf SUID, verstel teleskoophoogte HOËR


Die maan

Die maan is die aarde se enigste groot satelliet. Die ander is baie kleiner satelliete, veral menslike satelliete, wat oor die algemeen nie sigbaar is nie. Ek is redelik seker daar is 'n paar ander natuurlike satelliete, maar niemand is bekend nie.

Ek skryf hierdie bladsy om een ​​hoofrede: daar is baie mense daar wat kort-kort vra waarom ons maan nie die naam het nie. Ek moes dus regtig 'n bladsy skryf om die antwoorde aan hierdie mense te gee!

Die sonnestelsel bestaan ​​uit baie voorwerpe. Die primêre voorwerpe is die Son ons ster en die planete: Mercurius, Venus, Aarde, Mars, Jupiter, Saturnus, Uranus en Neptunus. Ons het twee verskillende soorte planete in ons sonnestelsel. Die rotsagtige planete soos die Aarde en die groot gasagtige planete soos Jupiter. Al ons planete draai om die son in 'n byna perfekte sirkel. En hulle is byna almal in dieselfde vlak.

Al die planete het ander kenmerke wat aan mekaar gemeen is. Hulle skakel almal op hulself aan en almal met gas het weerstoestande soortgelyk aan die waarneming op aarde soos storms.

Nog 'n kenmerk wat algemeen is vir die meeste planete: daar is voorwerpe wat om hulle draai. Dit is soortgelyk aan die planete wat die Son draai. Hierdie voorwerpe word meestal genoem mane.

Dit is waar ek inkom. Die maan is die aarde-satelliet. Die ander voorwerpe moenie mane genoem word nie, dit is satelliete.

En ja: die elektroniese toestelle wat mense deur die aarde stuur, word ook meer spesifiek satelliete genoem, kunsmatige satelliete. As een van ons skepe om Mars draai, word dit ook 'n satelliet genoem. Die meeste mense sal verwys na diegene met hul naam soos Galileo I of Viking 4 (het die fout hier opgemerk?)

Die interessante aspek van hierdie probleem kom hoofsaaklik in die Engelse taal voor. Ten minste, toe ek jonk in Frankryk gewoon het, was die Maan (Lune) die Aardsatelliet en al die ander satelliete, waar dit wel satelliete genoem word. Ek het dit belangrik gevind om dit te noem, want dit is nie almal wat dinge op die verkeerde manier noem nie.

Die naam Moon, in Engels, is dus die naam van die Moon. Tydperk. (As kanttekening is dit in Nederlands Maan en in Duits Mund.)

Dit blyk dat die woord 'maan' (sonder hoofletters) steeds gebruik kan word om 'natuurlike satelliet' te sê. Ek wonder net waarom ons dit ingewikkeld probeer maak, aangesien ons nie die hoofletters kan hoor as ons praat nie. (ek kan ten minste nie.)

Sommige mense is ook geneig om die 't' in 'The Moon' met hoofletters te gebruik. Dit is 'n Tarot-kaart, nie 'n satelliet nie. Moet dus nie die hoofletter gebruik as hoofletter aan die begin van 'n sin nie.

Let op dat u in Engels "lunar" sê vir iets wat na die maan verwys (dit wil sê die byvoeglike naamwoord is die Latynse woord!) Byvoorbeeld, Lunar Landing of Lunar Exploration.

Romeine het die Maan genoem Luna, wat steeds in Italië gebruik word. 'N Paar kunsmatige satelliete is deur Russies Luna genoem (die Russiese woord vir Moon is Luna & # x41B & # x443 & # x43D & # x430 in sillies geskryf.)

TaalMaan
Arabies& # xFEB3 & # xFEEE & # x631 & # x629 & # x627 & # xFEDF & # xFED8 & # xFEE4 & # xFEAE (dws Surat Al-Qamar)
NederlandsHeuwel
FransLune
DuitsHeuwel
Grieks& # x3A6 & # x3B5 & # x3B3 & # x3B3 & # x3B1 & # x3C1 & # x3B9 (dws feng & aacuteri / pheggari)
ItaliaansLuna
PortugeesLua
Russies& # x41B & # x443 & # x43D & # x430 (dws Luna)
SpaansLuna

Ou Griekse mense sou die Maan noem & # x3A3 & # x3B5 & # x3BB & # x3AE & # x3C5 & # x3B7 (Selene), die titanesse van die Maan, dogter van Hyperion en Theia. Die godin van die woude en heuwels, '& # x386 & # x3C1 & # x3C4 & # x3B5 & # x3BC & # x3B9 & # x3DB (Artemis), is die dogter van Zeus en Leto. Sy is geassosieer met die maan, maar dit lyk nie asof dit 'n plaasvervanger vir haar is nie & # x3A3 & # x3B5 & # x3BB & # x3AE & # x3C5 & # x3B7.

Die woorde maand en Maandag in Engels (Monat en Montag in Duits) kom van die woord Moon.

Het u opgelet dat die maan altyd dieselfde lyk? Dit is omdat ons altyd dieselfde kant sien. Die maan draai nie vanself nie!


Die wegdrywing van die Maan se ekwatoriale rotasiesnelheid - Sterrekunde

Die rotasie van die maan

Nuwe weergawe 12 Desember 2012

Opdatering vir die leek en wetenskaplikes

Aangesien die draai in die Astrofisika-gemeenskap selfs die eenvoudigste begrippe in die heelal kon begryp, as gevolg van hul plat aardteorieë, sal ons aandag gee aan die rede waarom die maan nie een keer om sy as per wentelbaan om die aarde. Nogtans glo NASA se woordvoerder sterrekundige Phil by Bad Astronomy nog steeds in hierdie mite. Of jy nou 'n betaalde debunker is of dat jy min wysheid het oor die heelal, wat is dit Phil?

Laat ons nou al die rook en spieëls in een teorie van die Sterrekunde verwyder, wat vandag steeds die rotasie van die maan kos. Vir diegene wat regtig wil leer, moet u alles wat u hieroor geleer het, weggooi en begin op 'n vars, ongeskrewe bladsy.

Ons kan almal saamstem dat rotasie gedefinieër word as 'n voorwerp wat om 'n sentrale as draai vanaf 'n instelpunt en na dieselfde punt terugkeer nadat die rotasieboog wat geskep is, 'n gedefinieerde vorm voltooi, 'n sirkel wat bestaan ​​uit 360 grade, gemeet op aarde in 'n perfekte voorstelling. van 'n baan of 'n variasie van 'n ellips aangesien kragte van buite die baan beïnvloed.

Kom ons ondersoek 'n enkele rotasie vir 'n statiese voorwerp as posisie binne die heelal waar 'n denkbeeldige vlak die planetêre sfeer halveer. In hierdie geval word sy ewenaar voorgestel, terwyl die rotasie-as 'n skeidshoek van 90 grade handhaaf. Die vlak sal nou in 'n rooster gesegmenteer word tot waar 'n punt op die ewenaar op die oppervlak van die sfeer as punt A aangedui word, 'n lyn getrek tussen daardie punt en die rotasie-as word aangedui as 'n rigtingpunt van 0 grade. Laat ons op hierdie stadium nog 3 toewys, wat 'n totaal van 4 verwysingspunte op hierdie sfeer gee, met die inkremente van 25 punte langs die beweging van een rotasie wat begin by 0 grade en dan deur 90, 180, 270 grade beweeg en terugkeer na puntoorsprong 0 .

Ons kan nou verwysingslyne uitbrei wat almal begin by die rotasie-as deur hierdie 4 punte langs die ekwatoriale sirkel na buite totdat hulle die wentelbaan van die Maan binne dieselfde vlak deurboor. Ons het nou 'n ruitvlak opgestel wat verwysingspunte het in verhouding tot statiese punte van kwartskeiding op die oppervlak van die aarde en sy as en hul verwysings-snypunte met die baan van die baan van die Maan.

Die volgende stap wat u moet ondersoek, is die eenvoudige beweging van 'n sfeer as wat in 'n reguit lyn beweeg terwyl u 'n enkele draai van 360 grade om dieselfde lyn inwerk. Die tydlyn van een rotasie van die sfeer gaan op 'n bepaalde, maar statiese lengte op die pad ingestel word. Waar die woord & quotlengte & quot aangewys word op die afstand van die sfeer wat langs die pad beweeg.

Laat ons nou 'n stel ekwivalente verwysingspunte langs hierdie pad opstel, waar die totale afstand gelyk is aan 'n spesifieke lengte wat staties is of nie verander vir hierdie voorbeeld nie. Die aanvanklike rigting van die lyn sal na die weste gewys word. Die punt van 0 grade word ingestel op wat dan uitsit in die rigting van wat u wes noem, slegs op 'n ontwerpte rooster wat nie verband hou met die magneetveld van die aarde nie, maar 'n papierverwysing, net soos die oorsprongspunt. Op 0,25 van die lengteafstand, draai die sfeer met die kloksgewys in lyn met die rigting en skuif nou 90 grade van die baan af. Op die lengte van 0,5 is die draaipunt van die sfeer gerig op 180 grade vanaf die paadjie of oos en wys na die agterkant van die beweging langs die baan. En met 'n lengte van 0,75 weer langs die pad, word die verwysingspunt van die bol op sy oppervlak 270 grade suid gerig. Aan die einde van die beweging, aan die einde van die baan van 'n statiese afstand van die lengte, vind ons die rotasie om die volle 360 ​​grade of een rotasie rondom die as van die sfeer te voltooi. As u die ewenaar op sy rand van bo die as visualiseer, word 'n voltooide sirkel getoon. So het ons teruggekeer na 'n punt 0 grade of die punt van oorsprong wat wes op die verwysingsrooster kyk. Ons is dus nou bewus van hoe rotasie van 'n sfeer optree tydens beweging langs 'n reguit lyn met 'n gedefinieerde afstand langs 'n pad wat gelyk is aan 'n statiese lengte waar die tydsverloop van die sfeer vanaf die punt van oorsprong en terug beweeg is gelyk aan die periode van een rotasie. Volg u almal my tot dusver? Indien nie, keer terug na die bokant van die bladsy totdat u die begrip verstaan ​​voordat u verder gaan.

Die volgende stap is om die konsep van geen rotasie van en sferiese voorwerp met 'n gevestigde verwysingspunt te oorweeg wat wes gerig is wanneer dit in 'n reguit lyn beweeg nie. Almal hier kan saamstem met geen rotasie terwyl hulle langs 'n reguit lyn beweeg nie, waar die verwysingsafstand steeds die vasgestelde statiese lengte is. U neem op alle punte langs die baan waar dat die punt op die ewenaar van die sfeer sonder rotasie wes bly wys. Dit sal die teenverwysingslyn wees wat geen rotasie om die as van die sfeer aanspreek terwyl dit oor die lengteafstand beweeg nie.

Kom ons spreek nou beweging binne die draaiingsvlak wat op 'n reguit pad plaasvind as dit deur 'n buitekrag beïnvloed word. Julle almal as leek en wetenskaplikes ken die huidige definisie van wentelbeweging van 'n maan of voorwerp oor 'n planeet of groot massa. Die baan van sy bepaalde baan is onafhanklik van sy interne beweging, maar word verander deur die vloei van swaartekrag na die planeet wat die voorwerp beïnvloed, wat 'n satellietbaan as 'n baan of rigting wat na die planeet krom, skep. Die punt as die swaartekrag die sentrifugale krag na buite meet, is die vorm van 'n stabiele baan die oog van menslike wetenskaplikes. Hierdie konsep is verkeerd, maar sal nie hier bespreek word vir hierdie bespreking nie. Die menslike konsep van 'n baan sal dus in hierdie voorbeeld gebruik word.

Die mensdom moet onderskei tussen die konsep van 'n geboë pad en rotasie op 'n bolvormige as langs die pad wanneer die konsep van die rotasie van die maan aangespreek word.

Laat ons nou, vir die finale vergelyking, vervang word deur 'n afstand van & quotlengte & quot; deur die afstand wat die Maan in sy sirkelvormige wentelbaan oor die aarde aflê. Segmenteer dieselfde sirkelbaan wat deur swaartekrag beïnvloed word, om 'n statiese gelyk te wees aan die afstand wat die Maan in een baan beweeg. Dus ry elke 90 grade langs die sirkelbaan deur lyne met behulp van die as van die aarde en die snypunt van die baan om standaard verwysingspunte op te stel, wat nou 'n reguit lyn was as dit deur swaartekrag beïnvloed is, is 'n geboë lyn wat 'n baan vorm . Volg my tot dusver? As dit nie weer bo begin nie, totdat u dit verstaan.

As u die baan met rotasie gebruik as die lyn wat krom weens swaartekrag, rotasie, kom dit steeds voor rondom die lyn met die beginpunt van die weste na binne gerig na die aarde. Die verskillende verwysingspunte en posisies weerspieël nie dieselfde verwysingspunt wat op die aarde of weste gerig is nie. Soos hulle nou in die ruimte van verskillende plekke uitwys as 'n posisiebepaling langs die pad.

As u die teenverwysingslyn van geen rotasie ondersoek waar die westelike voorkoms altyd na die planeet gerig word en die pad van die lyn deur die swaartekrag na die aarde gekrom word, is dit altyd sigbaar. Wanneer sferiese rotasie langs 'n geboë baanbaan by die 90 grade verwysingspunt plaasvind, sien ons 'n ander oppervlak van die satelliet. As daar geen rotasie van 'n sfeer in 'n baan om 'n planeet of massa plaasvind nie, word dieselfde oppervlak of gesig altyd gesien, aangesien swaartekrag verantwoordelik is vir die verandering van rigting en dieselfde gesig, nie een rotasie wat met een wentelperiode gesinkroniseer is nie.

As wetenskaplikes en sommige leke sal u laboratoriumverslae wees om die konsep te herskep deur 'n buigsame lyn te gebruik om die lengtepad te simuleer en 'n sfeer in 0,25 inkremente te sien, terwyl u die draai 90 grade per segment skuif. Buig dan die lyn as 'n reaksie op swaartekrag deur beide scenario's te gebruik. Wat sien jy? Voldoen u resultate aan gevestigde teorieë? Dit is tyd om aan te gaan. Gooi alles uit wat u geleer is en begin van vooraf. So, hoe hanteer u die weerlegging? Vra hulle hoe stel hul model die beweging van die Maan voor as daar geen rotasie rondom die as van die Maan was nie. Vir baie ontmoetings sal hulle antwoord stil wees, of ek sal terugkom.

Die opdrag: Die sterrekundiges van vandag verduidelik die rotasie van die maan om sy as met die een kant sigbaar vir die aarde. Volgens die teorie draai die maan om sy as in sinchronisasie met sy wentelperiode om die aarde. Hierdie omwenteling of stadige draai van die as van die maan draai na bewering presies teen 'n tempo, wat dieselfde kant altyd na die aarde toe hou. Ons ondersoek hierdie teorie om die waarheid agter hierdie hipotese aan te spreek of om 'n nuwe oplossing aan te bied.

Volgens die huidige sienings en teorieë draai die maan een keer om sy as vir elke wentelbaan om die aarde. Hier is 'n aanhaling van 'n gerespekteerde sterrekunde-webwerf en quotBad Astronomy & quot wat die 2004-wetenskaplike Amerikaanse wetenskap- en ampstegnologie-webtoekenning gewen het.

& quotHoe dit werk: as u op verskillende nagte uitgaan en na die maan kyk, sal u altyd dieselfde funksies sien, op ongeveer dieselfde posisie. Dit lyk asof die maan nie draai nie! Ag, maar dit doen dit.

Dit kan gesien word met behulp van 'n model. Gryp twee lemoene (of appels, of basebolletjies, of enige grof sferiese voorwerpe wat u byderhand het). Merk een met 'n 'X', dit verteenwoordig 'n kenmerk op die maan. Sit nou die ander een op 'n tafel, dit is die aarde. Plaas die Moon-model ongeveer 30 sentimeter (een voet) op die tafel met die X na die Aarde-model. Beweeg nou die maanmodel asof dit om die aarde wentel, en sorg dat die X te alle tye na die aarde-model kyk.

Verras! U sal sien dat om die X na die Aarde-model te hou, die Maan-model moet draai terwyl dit rondom die Aarde-model gaan. Verder kan u sien dat u dit presies een keer elke wentelbaan moet draai om die X teenoor die Aarde-model te hou. As u dit nie draai nie, sal die Moon-model al sy 'sye' aan die Aarde-model wys terwyl dit rondgaan.

Nou was ek 'n bietjie lastig hier. Ons praat oor twee verskillende verwysingsraamwerke, een op die oppervlak van die aarde wat uitkyk na die maan, en een buite die aarde-maanstelsel wat in kyk. U het die eksperiment vanuit laasgenoemde raamwerk uitgevoer en gesien hoe die maan draai. Van eersgenoemde kan u egter self sien dat die maan nie draai nie. Wat hier aangevoer word, is dat die maan in een raam draai, in die ander nie.

Ons het eintlik drie dinge geleer:
# 1) die maan draai as dit om die aarde wentel (soos gesien deur 'n waarnemer van buite)
# 2) dit draai een keer vir elke baan (na daardie waarnemer) en
# 3) as dit nie draai nie, sou ons uiteindelik die hele maan sien as dit om die aarde wentel.
& quot

* Hierdie webwerf onderskryf of stem saam met enigiets wat in die Grant Chronicles geskryf is nie, maar het in die verlede sterk teenstand oor sy forums van sy lede gelewer.

Gaan nou 4 jaar verder tot 2008 en hoe die sienings verander het, het die Discovery Channel 'n dokumentêre film oor ekstra sonplanete gedoen en 'n teoretiese planeet aangebied wat deur swaartekrag toegesluit is waar die planeet nie draai nie. In hierdie voorbeeld bied die ster en die planeet in 'n onderlinge baan dieselfde gesig van die planeet. Hoe vind dit plaas met die huidige teorieë oor maanrotasie?

Kom ons ondersoek die huidige status quo vir maanrotasie

Tans in 2011 is die status quo op die gebied van die sterrekunde dat die maan om sy as draai in 'n tydperk gelykstaande aan die ongeveer 27.322 dae rotasieperiode rondom die aarde. Laat ons dus kyk na die verwysingsraamwerk wat gebruik word in die huidige teorieë op die gebied van sterrekunde wat hierdie gevolgtrekking ondersteun het. Toe wetenskaplikes tot die gevolgtrekking kom dat die as is dat die maan gedraai word in pas met sy wentelbaan wat altyd dieselfde kant bied, lyk dit waar, maar dit is die verwysingsraamwerk wat gebruik word, wat die bron van verwarring is.

Kom ons kyk na enkele feite rakende die mensdom. 'N wentelbaan is waar swaartekrag 'n baan van 'n voorwerp krom om om 'n sentrale punt te draai. Die definisie rotasie neem die verwysingspunt in ag, as die voorwerp rondom 'n verwysingspunt buite die voorwerp draai, is hierdie beweging 'n baan. As die rotasie 'n verwysingspunt binne die voorwerp is, is dit rotasie-draai.

Sterrekundiges het 'n basiese fout gemaak in die baanwerktuigkunde, en as hulle die antwoord kry, is dit verkeerd. Dit is 'n dekade sedert sommige van u in die veld hierdie vraestel gesien het en dit op die forums bespreek het, maar & quotAsk the Astronomer & quot het nog steeds nie geleer nie. Die verwysingsraamwerk wat gebruik is, het die aarde as die middelpunt ingesluit, ja, 'n punt op die maanoppervlak draai, maar dit is te wyte aan die swaartekrag wat die pad van die maan buig. Die maan draai nie 360 ​​grade om sy interne as as rotasie nie. Binne hierdie verwysingsraamwerk volg die maan se as sy draai as die swaartekrag die bewegingsrigting van die maan na binne draai, maar die orbitale afstand behou. Sterrekundiges weerspreek weer hul eie woorde as hulle 'n eenvoudige uiteensetting van die beweging van die maan gee, wat die draai en draai van die wentelbaan beskryf. Die probleem met die huidige teorieë oor maanrotasie is dat diegene wat hierdie teorie geformuleer het, verward was om 'n geboë rotasiepad om die aarde te voltooi, aangesien die maan stadig draai terwyl die verwysingspunte van die maan verander in verhouding tot die planeet. Dit is slegs die illusie van rotasie, aangesien ander in 'n uitgebreide verwysingsraamwerk 'n voorwerp om 'n punt kan draai en dit lyk asof u dit draai. Die sleutel hier is om te draai dat dit nie om sy as draai nie. Dit is eenvoudige baanwerktuigkunde 101.

Laat die leek 'n eenvoudige voorbeeld ondersoek, 'n sfeer sal in die lug sirkel rondom die punt waar u staan. Die geverfde kant draai altyd na u. Nou vervang ons die sfeer deur 'n helikopter wat dit sirkel en ons sien dieselfde kant, maar versnel en vertraag en ons sien steeds dieselfde kant. Let nou op die rotor as dit van dieselfde lem af is wat na ons kyk. Laat die rotor nou een keer draai om die as van die helikopter met die naaste lem gemerk. Nadat die helikopter dit halfpad gemaak het, vind u die gemerkte lem aan die ander kant van die kopter om net aan die binnekant te wys na voltooiing van die sirkel. Slegs van bo af kyk jy hoe die kopieër eers suidwaarts draai, dan wes draai dan noord en dan oos simuleer rotasie, maar dit is slegs 'n verandering in rigting. U het ook gesien dat wentelsnelheid niks daarmee te doen gehad het om dieselfde kant te sien nie as gevolg van sinkronisering van die rotasieperiode en sy draai om die as vir die maan.

Eksperiment. As u 'n stok het, heg 'n lyn aan een van sy punte om 'n spilpunt en verbind die ander punt deur die middel van die bal en bind vas. Draai die bal om jou, draai die bal om sy as? Hoe kan dit, dit is aan 'n tou vasgemaak? U sien dieselfde gesig van die bal as dit om die houer van die stok draai. U kan bevestig dat 'n punt op die bal as u uself en die geboë pad van die bal insluit, wel sy posisie binne die groter raam verander, maar die bal self draai nie om sy as nie. Spin is a relationship between a frame of reference that is within the object in question and its rotation is about a set point within that frame. It is not the motion of the total frame of reference as an object revolves in a circular path around a pivot point the Earth in this case giving the illusion of spin about the axis, when it is a change position due to rotation. Are you confusing motion of an object following a curved path as oppose to spin about its axis? I hope you answered no. So why do you use the same of conditions and principles to validate the Moon's rotation about the Earth and to validate the moon's spin about its axis are in perfect synchronization?

A Description of Moon Rotation about its Axis

The first assumption that has to be dropped is the confusion over frame of reference. If the Moon was a railroad car and its orbital path is determined by tracks, we realize the car is always turning towards the Earth. This is due to gravity constantly bending the path of the Moon towards resulting in an orbit being created. There is a different between a gravity induced curve path or orbit and rotational spin about an axis. The two are inherently different as the point of reference related to rotation moves from the axis within the Moon to the Earth. Ask yourself does the car turn while driving a complete circle or complete one spin about its center during the same trip around the circle?

Lets consider a fresh approach to solving this problem.

In the lateral diagrams A is the initial reference point and will be assigned a location of zero degrees with measurements proceeding 360 degrees counter-clockwise back to that point.

In Diagram 1 we have setup the orbital path of the Moon around the Earth and designated the middle of the face of the Moon, which we see on most nights as reference point A for the extreme eastern part of the orbit. The Moon location in Earth orbit and point A will have the same initial value of 0 degrees and additional reference points will rotate counter-clockwise.

In diagram 2 we begin to perceive the idea of rotational spin about the axis of the Moon while in orbital motion about the Earth. Here we have moved the position of the moon 45 degrees counter-clockwise along its orbital path. Point B represents a 45 degree movement of the axis in relation to the tangent line of the orbital path. Remember the motion or curved path is due to gravity affecting forward motion of the Moon by turning not rotating.

Finally here in Diagram 3 lets examine the designated points and equate their position to rotation about the Moon's axis in relation to one orbit. If point A reached point D @ 270 degrees in a 90 degree sweep or a quarter orbit, the Moon would spin about its axis 3 times at the completion of one orbit. If point A reached point C @ 180 degrees in a 90 degree sweep or a quarter orbit, the Moon would spin about its axis 2 times at the completion of one orbit. The key to math is continuity. Now if point A reached point B @ 90 degrees in a 90 degree sweep or a quarter orbit, the Moon would spin about its axis 1 time at the completion of one orbit. Point A is a point where no rotation about an axis occurs. Again point A maintains a perpendicular orientation to the closest Earth tangent line along the Moon's orbital path.

Explanation of Frames of Reference

Astronomers observing the Moon noticed that it seems to be rotating on its axis in precise synchronization with its orbital speed, but their conclusion is so wrong. A close examination would reveal the Moon does not rotate at all and is void of spin. If the face of the Moon was like a tire and this tire turned one time to complete an orbit. Does not the surface of tire move as it revolves? You did say the Moon rotates about its axis, so how can the same point on a tire be seen if it rotates once about its axis from a reference point inside the orbit?

Here is an experiment that can be conducted in your elementary astronomy labs. Reviewing an object rotates when the reference point that spin occurs is within the object itself. A set up a simple clear rigid plastic 16 inch square sheet, 1/2 inch thick. Drill a hole in its center and attach a rigid rod. Drill a hole through center of a 2 inch wafer the same diameter as the rod, glue several inches above the base to the rod. This will be a base. Drill just greater than the rod diameter through the center of a six inch or its closest centimeter equivalent in diameter hard plastic hollow sphere. At its equator, drill another hole 90 degrees to the central axis. Glue or epoxy a hard straw at to opposite attach a 2 inch Styrofoam ball glue in place.

Rotational spin within the object is defined as the axis line (a straight line drawn from pole to pole) moving away from the reference point and returning to while moving in one direction. In the absence of rotation, the points of the axis line and the initial reference point remain aligned. Now that a rigid rod is attached to the Styrofoam ball (the Moon) and the six inch plastic sphere (Earth) we expand our frame of reference. Spinning the Earth causes the Moon to orbit as the rod represents gravity that turns the path of the Moon into a curved path and at the completion of one revolution an orbit. Upon observation the same face of the Styrofoam ball representing the Moon is always pointed toward the plastic representation of Earth no matter what the orbital velocity that occurs. Again as you notice the sphere representing the Moon does not spin about the axis within, you constantly see the reference point and the axis line are locked. If it did spin you would have to see all sides of the sphere from Earth. Looking at the total picture we find that a sphere with no rotation when pivoting about a point outside of the sphere presents the same view of the reference point and axis line. In the second part when the speed of the rotation of the sphere to completes 1 rotation within the grid was matched to pivoting about 360 degrees in synchronization you still see all sides. Now realize the Moon is the sphere within the grid and the pivot point is Earth not the Moon axis and this change the view of mankind's current observations? Can astronomers present a simple experiment with models that backs the how Moon rotates? No. Now we should finally move on.

If the Moon does not rotate, can you present a new concept of what is responsible for planetary or stellar rotation?

A simple illustration of what is responsible for rotation of a cosmic object with a fluid inner core can be shown with an egg example, not that an egg has anything to do with spin about an axis, but it will demonstrate the basic principle. In the universe, movement is about rotation being driven by the rotation frictional force from the inner core driving the shell or crust, not because of compression of matter invoking conservation of energy thus increasing rotational spin about the axis. Although this concept of rotational spin is true during formation of the object just after a localized big bang, but over time movement stabilizes the shell, its liquid interior is still subject inequalities of the neighboring gravitational and magnetic influences. This constant attraction, resultant spin within the molten core, is perpetuated by overshooting the point of attraction, drifting until attracted again and the cycle begins again is the basis for fluid inner core rotation. The fluid core of a planet is affected by universal gravitational and magnetic forces, as there is an attempt for matter in different parts of the core to seek equalization resulting in spin. The rotating core has a frictional coefficient where its torque a product of rotational spin and mass, the surface area of the core. It is this contact that drives the dependent mass of the shell or crust, which translates into stellar or planetary surface rotational periods.

For a simple experiment, spin an egg on a smooth surface to represent the forces affecting planetary cores. Stop it for a fractional second, then let the egg go. The core, which is spinning will drag the shell, thus rotation or in the case of a planet, its crust. This is rudimentary example explaining the principles of rotation in planetary and stellar objects.

Change comes about with a fresh start.

All Rights Reserved: Copyright 2001, 2004, 2008, 2009, 2011,2012


The Institute for Creation Research

At last count, our moon was just one of three dozen planetary satellites in the solar system. Jupiter has at least fourteen Pluto and many of the asteroids apparently also have orbiting moons. However the moon which dominates the earth's night sky has many created distinctives of its own. Furthermore all efforts to explain our moon's existence by natural physical processes have failed completely. This lack of understanding of origins also continues on the larger scale of the universe itself. Astronomers are perplexed by the missing mass of the galaxies, the missing neutrinos of the sun, and the missing mechanisms for formation of stars and planets. One is reminded of the prophet Jeremiah's counsel that the creation itself is in the end unfathomable: the heavens can never be fully measured, nor the foundations of the earth searched out (Jeremiah 31:37). Only the special revelation of God through His Son and His Word provides final answers in matters of origins. God was, after all, the only One there!

The Lord knew that men would attempt to account for the moon by natural evolutionary mechanisms. Thus there are forty lunar references in Scripture, many of which declare the moon's supernatural origin and beneficial design. The moon is compared with the Lord's covenant with David:

The moon above serves as a constant reminder of God's faithfulness and of the creation event.

Natural Lunar Origin

Evolutionary ideas for the source of the moon divide themselves into three areas: formation van the earth (fission), formation independent of the earth (capture), and formation simultaneously with the earth (condensation). These three mechanistic alternatives are sometimes respectively called the daughter, wife, and sister theories of lunar origin! A brief consideration of each will demonstrate their total inability to naturally explain the moon's existence.

Die fission theory assumes that the earth rotated very rapidly during its early history. A moon-size chunk of material broke loose from the earth's equatorial region due to the rapid spin, together with resonant vibrations. The lunar material went into a low earth orbit and has been slowly spiraling outward ever since. This theory was first proposed in 1898 by George H. Darwin, one of Charles Darwin's ten children. However the fission theory is completely ruled out today on the basis of three mechanics considerations. First, the combined earth-moon system today has less than half of the required angular momentum or circular motion needed for fission to actually occur. To become unstable the earth would have to rotate with a period of just three hours instead of the present 24 hours. Angular momentum is a conserved or constant quantity in nature, and such a large amount of angular motion does not exist today.

Secondly, a moon flung off from the earth would leave from the vicinity of the rapidly moving equator, and assume an orbit in the earth&rsquos equatorial plane. However the actual lunar orbit is tilted by as much as 28.5° to the earth's equator. Thirdly, the large disruptive tidal effects of a moon initially in the vicinity of the earth would be catastrophic for both objects. Frictional effects would raise the earth's temperature to 1000° with consequent melting and partial vaporization of the crust. The moon would fare even worse as it passed through the earth's breakup distance, or "Roche's Limit." Extending 18,500 kilometers outward from the earth's center, a massive satellite within this boundary would be unstable against the large disintegrating gravitational force.

An origin by capture requires the moon initially in its own solar orbit to drift close to the earth. The earth's gravitational attraction then deflects the moon into a permanent earth orbit. Of course this theory does not actually explain the initial origin of the moon. Furthermore there are strong arguments against capture, including the low probability of the event and the actual mechanism of capture.

For example, how is the speed of the initially unbound moon reduced to permit capture? There is simply no known means by which the moon's velocity could be largely dissipated on a single pass.

Die condensation or nebular theory calls for an independent growth of the earth and moon from dust and gas in the same region of space. The fundamental assumption made here is that condensation will actually occur. However, force calculations and entropy considerations rule out such a collapse process unless extreme initial conditions of a highly dense gas already exist. Some suggest that a supernova explosion in the solar system's neighborhood compressed the gas. Others propose an initial abundance of gravel-sized particles with an inherent "stickiness" to aid gravitational collapse. Condensation of either moons, planets or stars is clearly an enormous problem for natural astronomy!

It was hoped that the impressive series of Apollo visits to the moon would provide final answers to the embarrassing scientific dilemma of lunar origin. However the conclusions drawn from the vast new reservoir of data are still ambiguous with respect to origins. One research leader summarized Apollo findings at the conclusion of the $25 billion project: 1

Supernatural Lunar Origin

The common assumption of the previous explanations is that the moon formed slowly by random, accidental processes. Scripture, in direct contradiction to man's futile reasoning, states that the moon was created instantly (Psalm 33:6), out of nothing (Hebrews 11:3), and as a fully functioning satellite (Genesis 1:16).

Does the earth's moon actually reveal purposeful design and uniqueness? Consider the following five examples selected from the vast store of lunar physical data.

1. The earth has only een natural satellite! Furthermore the mass or size ratio of the earth-moon pair is more than ten times that for any other known planet-satellite pair in the solar system. 2 That is, while several other satellites are heavier than the moon, no other planet possesses a satellite having a mass which is such a large fraction of the planet's mass. Thus it is significant that the earth, true to scripture, has just een substantial moon to provide its evening light.

2. The moon does provide the earth with adequate nag illumination. In contrast with the sun, it is a gentle, passive ruler of the night sky. Of course the moon's large size is essential for it to provide significant reflected light on the earth. If its mass were reduced by 99% to make an "average size" solar system moon, then the evening light received on earth would be severely decreased by twenty times its present amount. 3

The Book of Genesis states: "And God made two great lights the greater light to rule the day, and the lesser light to rule the night . " (Genesis 1:16). The Hebrew term translated light (or) in this passage is flexible enough to include light reflectors such as the moon and the planets. The fact that the moon, which is a reflector, and the sun, which is far from being the largest star, are named "two great lights" is perfectly consistent with the language of appearance which is used throughout the Bible.

3. Throughout history the moon's cycle of phases has provided man with an accurate time record. During Old Testament times the nation of Israel based their calendar month on the moon. They celebrated the first appearance of the waxing crescent moon with a festival of reconsecration to God. 4 The 29.5 day lunar calendar is steeds in use by the Islamic world, and even today we base the date of Easter on the moon's phase.

The combination of size and distance of the moon from the earth results in the special situation that the 0.5° angular size of the sun and moon as seen from earth are the same. The moon is 400 times smaller than the sun but it is likewise 400 times closer to the earth. Because of this purposeful situation the moon is able to occasionally eclipse the sun exactly, providing a precise time record. Computer studies furthermore show that this perfect eclipse condition is unique among all the known moons of the solar system. 5 The significance of eclipse data for Biblical studies is great, for it provides confirmation that the chronological systems employed by Old Testament scribes were perfectly accurate.

The tides provide a final example of the moon's orderly motion around the earth. Earth tides are caused primarily by the gravitational attraction of the moon. These tides have inestimable value in prospering ocean life, cleansing shorelines, and even providing a potential non-polluting energy source. 6 These tidal efforts vary as the inverse distance cubed between the earth-moon system. Thus if the moon were just 30% closer to or further from the earth, the tidal effects on earth would be respectively doubled or halved. Either alternative would greatly upset our way of life. As is always the case, any proposed readjustment of the physical creation leads to degeneration.

4. The moon's orbit is stable. It is in no danger of burning up in the earth's atmosphere, as for instance the artificial satellite skylab. The moon is a safe twenty earth diameters away and yet is large enough to be seen clearly. Actually the earth-moon separation is slowly increasing. Tidal drag is decreasing the earth's rotation rate and days are becoming longer. Meanwhile the moon is spiraling outward from the earth as it gains the earth's lost angular momentum. However the very small changes involved reveal the actual long-term stability of the system. Eclipse records show that the earth rotation period of 24 hours has decreased by only 0.075 seconds in the past 3000 years! Simultaneously the moon is leaving the earth at the rate of 5.8 centimeters/year, or only 174 meters in 3000 years!

Recent fossil data have been used to "prove" that the moon was 60% closer to the earth 400 million years ago. 7 The fossils considered are those of the chambered Nautilus. As Nautilus grows it incorporates two repeating structures: first, new chambers in which it lives, and secondly, growth lines within each chamber. It is assumed that growth lines occur daily, and further that a new chamber is tidally induced with each lunar cycle. If true, then Nautilus does indeed preserve a historical record of the number of days per lunar month. The number of growth lines is found to decrease sharply for fossil shells, from 29 down to only 9 days/lunar month. Thus the conclusion drawn is that the fossils reveal short lunar months in the past. That is, the early moon which regulated the fossil Nautilus was close to the earth and revolved three times more rapidly than at present. Of course the assumption is made that Nautilus behavior and tidal effects have remained unchanged for nearly 0.5 billion years! Furthermore, it remains an unproven hypothesis that Nautilus actually grows according to daily and lunar cycles. Finally, the lunar records derived similarly from banding in corals and from other Nautiloid species do not agree with the chambered Nautilus results! 8 Therefore this marine fossil evidence involves a vast extrapolation with inconsistent results.

5. No hint of life has been found on the moon, nor anywhere beyond the earth in the solar system or universe. How fair the earth is to look at in comparison with the lifeless, cratered surfaces of our neighbors! The first two Apollo teams were quarantined upon their return to earth, but this was quickly realized to be unnecessary in view of the sterile moon. The moon definitely provides multiple benefits for life on earth. However it remains secondary to the earth with no life of its own because none was created there!

6. The fission-capture-condensation theories each requires the moon to be billions of years old. However, several lines of evidence continue to point to a recent lunar creation on the scale of thousands of years. First, a growing catalog of transient lunar phenomena (moonquakes, lava flows, gas emissions) show that the moon is not a cold, dead body. It is apparently not yet in thermal equilibrium and is still adjusting to tidal stresses. Secondly, the lunar dust problem won't go away! A uniformitarian extrapolation of present dust accumulation leads to a moon that should be covered with a vast sea of dust. Efforts have been made to reevaluate dust accumulation rates and to find a mechanism for lunar dust compaction, but the dust's absence remains unexplained on a billion-year time scale. Thirdly, the analysis of lunar soil has cast doubt on long ages of time. The lunar surface simply does not reveal the extent of soil mixing that long ages predict. Also, the radiometric dating of lunar soil shows it to be a billion years older than the adjacent rocks. However, the soil and rocks had previously been assumed to be of the same age!

The evidences of the value and beauty of the moon are not meant in themselves to bewys the truth of Christianity or creation. The witness of nature was never intended by God to be a substitute for special revelation. Its function is to remind men of what they already know about God and to activate their consciences with respect to their spiritual responsibility. (Rom. 1:18-23). This presentation has contrasted the failure of natural origin theories with the positive evidences of lunar creation. May it provide a basis for the further study of creation and the perfect Creator, to whom the moon owes its perfect design and whose faithfulness it eloquently declares.


1. Inleiding

[2] A dominant feature of the tropical F region ionosphere is the Equatorial Ionization Anomaly (EIA), consisting of two regions of enhanced plasma density at ∼15° north and south of the magnetic dip equator. The EIA forms as a result of the upward E × B drift of plasma near the magnetic equator due to the eastward zonal electric field. This upward E × B drift, in combination with ambipolar diffusion along the geomagnetic field lines, transports ionization away from the magnetic equator toward higher latitudes. The plasma rises until pressure forces and gravity cause the plasma to descend along the field lines to tropical latitudes. At dusk, the interaction of the E en F region dynamos results in an enhancement of the eastward electric field before it turns westward at night, prompting the prereversal enhancement (PRE) of the upward E × B drift. As a result of the increased vertical drift caused by the PRE, the densities in the EIA are enhanced and can persist well into the evening. The density and latitudinal extent of the nighttime EIA is strongly associated with the vertical drift velocity during the day, at dusk, and in the evening hours.

[3] Observations and modeling studies have shown that there exists a linear relationship between the maximum velocity of the PRE and the strength of the EIA crests. Whalen [2001 , 2003] used arrays of ionospheric sounders to infer that the maximum strength of the F2 layer electron density (NmF2) of the anomaly crests is linearly related to the PRE. Subsequent work [ Whalen, 2004 ] expanded the study to include the relationship between the NmF2 and PRE at all levels of solar flux using eight ionospheric sounders across the globe. Whalen found that the NmF2 at each station varied linearly with the monthly average solar flux. He then used the linear relationship between the PRE and solar flux from Fejer et al. [1996] to derive a linear relationship between NmF2 and the PRE. In an averaged sense, the linear relationship is not dependent on the solar flux level. Because the relationship with solar flux varied with longitude, the relationship with the PRE was inferred to vary in the same way. Whalen found that the relationship did not vary with season. Meer onlangs, Li et al. [2008] used in situ data from DMSP, ROCSAT-1 and CHAMP to study the relationship between plasma bubbles, the EIA and PRE at solar maximum. Figure 3 from this study shows a direct comparison of the crest-to-trough ratio of the EIA NmF2 to the PRE that suggests a linear relationship during the solstices, but not during equinox months. Longitudinal variations in the relationship were not analyzed. In a theoretical study, Basu et al. [2004] used 14 days during the solar maximum year 2002 to study the relationship between the PRE and the crest-to-trough ratio of the total electron content (TEC) using drift measurements from the Jicamarca incoherent scatter radar to drive an ionosphere model. The study showed that a linear relationship starts to develop at 2000 LT and persists for at least three hours, though the slope of the relationship changes as a function of time.

[4] Such a linear relationship is useful in that it can be used to approximately derive one quantity when the other cannot be measured. For example, measurements of the EIA from a chain of ionosondes or space-based instruments can be used to infer the PRE when vertical drift data is unavailable. The PRE is a useful parameter in that there is evidence it can be used to predict the occurrence of plasma depletions, or equatorial spread F (ESF) that lead to scintillation [ Anderson et al., 2004b ]. Various studies suggest the PRE must exceed a threshold velocity in order for ESF to occur [e.g., Fejer et al., 1999 Basu et al., 1996 Whalen, 2001 Anderson et al., 2004a ]. Basu et al. [2004] demonstrated that the linear relationship could indeed be used to estimate the strength of the PRE. In order for a measurement of the linear relationship to be useful, however, knowledge of its drivers is necessary to understand its range of validity. The goal of this work is to investigate the relative roles of the daytime and PRE drifts in the linear relationship between the PRE and EIA strength and to determine to what extent the relationship varies with longitude and solar cycle conditions.

[5] The study by Whalen [2004] suggests that a linear relationship holds for all levels of solar flux. Basu et al. [2004] showed that this relationship holds at solar maximum, but until now it has not been directly observed at solar minimum. In section 2, we use daytime and evening vertical plasma drift measurements at Jicamarca along with space-based ultraviolet (UV) measurements of the nighttime equatorial anomaly to establish that this linear relationship holds under solar minimum conditions (F10.7 = 80). In section 3, we use a physics-based model of the ionosphere to investigate the drivers of the slope and linearity of the relationship and how these quantities vary with longitude and solar cycle conditions. The UV measurements of the EIA, along with linear relationship established by the data, are used to validate the model. We discuss our results and present our conclusions in sections 4 and 5.


How Long Until The Moon Slows The Earth To A 25 Hour Day?

NASA's Lunar Reconnaissance Orbiter (LRO) recently captured a unique view of Earth from the . [+] spacecraft's vantage point in orbit around the moon. Image Credit: NASA/Goddard/Arizona State University

The Earth’s rotation is indeed being slowed down by the presence of the Moon - every year, the Moon gains a little energy from the Earth, and drifts a little farther away from us. This drift is imperceptible to the human eye, but measurable, with the aid of undertakings like the Lunar Laser Ranging Experiment, which regularly bounces a laser off of a retroreflector that Apollo astronauts placed there.

Both the drift of the Moon and the slowing of the rotation of the Earth are very very small effects- the slowing of the Earth’s rotation over the last 100 years is estimated to be about 1.4 milliseconds. That’s a slowing of 0.0014 seconds total, over 100 years. Another method of estimating the slowing of the Earth uses historical records of solar eclipses to figure out exactly how fast the Earth must have been rotating in the past, and comes up with an average slowing of 2.5 milliseconds each century. To extrapolate out into the future, I’m going to use the average of these two numbers, and guess that we’re dealing with a slowing of approximately 0.002 seconds every century.

As a point of reference, this rate of slowing means that it will take 25,000 years to add a half a second to the Earth’s day. A whole second will take 50,000 years.

The release of the first images from NOAA’s newest satellite, GOES-16, is the latest step in a new . [+] age of weather satellites. This composite color full-disk visible image is from 1:07 p.m. EDT on Jan. 15, 2017, and was created using several of the 16 spectral channels available on the GOES-16 Advanced Baseline Imager (ABI) instrument. The image shows North and South America and the surrounding oceans. GOES-16 observes Earth from an equatorial view approximately 22,300 miles high, creating full disk images like these, extending from the coast of West Africa, to Guam, and everything in between. Image Credit: NOAA/NASA

To add an entire hour? Every hour contains 3,600 seconds - (60 minutes to an hour, and 60 seconds to a minute). And so, to wait long enough to gain 3,600 seconds, we’ll need to wait 50,000 years 3,600 times over - 180 million years.

Every so often, a powerful earthquake will strike somewhere on the Earth, and the news will report that the planet’s days have shortened again - but this effect is even smaller! The massive 9.0 Earthquake in Japan a few years back only shortened the length of our day by a microsecond - a thousand times smaller of an effect than the slowing of our days by the Moon. You’d need a thousand earthquakes that strong in a century in order to cancel out what the Moon is doing from afar.

180 million years is a hefty chunk of time. Assuming that we humans have managed to tend to our planet, and prevent any incoming destructive asteroids from hitting us, among other problems, our little star will have made it 75% of the way around our entire galaxy.


The moon, with all the Apollo landing spots mapped

Where were they supposed to go? That would have been cool to see in relation to the other landing sites.

Do moon landing deniers realize there were in fact 6 landings?

I don't think they care too much about logic in general.

One theory I heard was that we indeed went to the moon on the following missions but the first one was staged. So, you see, there's a variety of bullshit to sample.

They're retarded, they barely know their own names.

Here is a photo of the full moon my wife and I took earlier this week.

I know there already several of this kind online, but I wanted to do my own “mapping” of all the manned Apollo Landings. I also added the insignia for each mission, the year, and the landing zone’s name.

It was a challenge to pinpoint the exact spots, especially since NASA's own map is with inverted colors: https://www.nasa.gov/mission_pages/LRO/multimedia/moonimg_07.html

Equipment used

Baader MPCC Coma corrector MkIII

Editing: Lightroom and Pixelmator

Can someone tell me how to make this a 36 x 24 poster? Iɽ frame the shit out of this.

Is there a reason they are all in a somewhat narrow band around the equator?

I believe that equatorial landings are easier for some reason. I could guess why, but Iɽ probably be wrong. I also don't have time to do muh google fu.

It's because the extraterrestrial landing sites on the far side of the Moon are at the poles. Less chance of an accidental first contact by having our astronauts land around the lunar equator on the near side. Duh.

Ha! Who am I kidding? Anyways, the moon landings were faked, sheep. Wake up.

Ha again! Okay, still reading? Seriously, good question. The answer can be found in two interrelated parts - a necessary adherence to a doctrine of fuel conservation, and orbital mechanics.

When launching a space vehicle intent on breaking escape velocity and making it to orbit, be it on Earth or the Moon or truly anyplace, the closer you are to the body's equator, the more assistance you get from that body's rotation.

Standing on Earth's equator, you may feel like you're stationary, but in fact you are traveling eastward, because the Earth is rotating that way, at 1670 kilometers per hour.

Standing on a latitude half way between the equator and either pole, you're moving eastward at a paltry 1180 km/h.

So free thrust is given to the vehicle from the parent body's rotation, and the closer to the equator your launch pad is the more free thrust you get! And when you need to measure the several thousand ton spacecraft to the milligram, and the spacecraft has to carry enough fuel to reach escape velocity, (then make a controlled descent on the moon, AND RETURN to Earth) where on Earth escape velocity is 40,270 km/h, you better believe astronautical engineers will make use of every natural advantage they can.

Related to all of this is the mechanical reality that stable orbits by definition need to cross the equator of the body they are orbiting, unless they want to continuously spend precious fuel maintaining an unstable orbit.

So in your particular question, why did the Apollo missions land near the lunar equator? So that they got more free rotation from the Moon on take off (they had no intention of becoming permanent residents) and there was absolutely no ability to find fuel anywhere beyond the surface of Earth.

Sure they technically could have put themselves in a stable polar orbit, or an unstable orbit over some arbitrary lunar latitude other than the equator, through the costly expenditure of their fuel, but given the mission parameter of OH GOD OH GOD PLEASE LET THIS BE A ROUND TRIP they needed to marshal their fuel for the subsequent engine burns necessary to break lunar orbit, park in geocentric (Earth) orbit, and then deorbit themselves into a nice splashy ocean.


Miranda

Miranda (Uranus V) was discovered in 1948 by Gerard Kuiper using a telescope of two meters, at McDonald Observatory. The southern hemisphere of Miranda was photographed by Voyager 2 in January 1986.
Its orbit is prograde (forward) and nearly circular (eccentricity = 0.0013).
Miranda is constituted by a roughly equal mixture of ice and rock. It is the nearest of the moons of Uranus, the semi-major axis of its orbit is 129 900 km.
Uranus is practically lying on the ecliptic plane with an inclination of its axis of rotation of 97.86 °, the orbit of Miranda follows the atypical rotation of the planet.
A catastrophic event is certainly at the origin of this inclination. Uranus' moons were formed from the sub-nebula that gave birth to Uranus.
Miranda has a slope (4.338 ° to the plane of the equator of Uranus), greater than other large moons of Uranus (≈ 0 °). Miranda innermost large moons of Uranus is a strange world that has probably had a tumultuous past.
Closely examined by Voyager 2 in 1986, this dark world and far proved to be quite surprising.
Miranda shows a unique variety of terrain which led some astronomers to believe that it was broken up 5 times during its evolution as shown in the famous "chevron" feature, the brilliant V-shape just above the image center. This composite image of high resolution Miranda shows a series of peaks, valleys and smooth surfaces as well as obscure canyons ≈ 24 km depth as the large crater (center of image).
The center of the picture is the south pole of Uranus.