We are searching data for your request:
Upon completion, a link will appear to access the found materials.
Ek het 'n vorige soortgelyke vraag gestel, maar ek wonder, kan 'n ster 'n maan nader aan sy planeet laat beweeg of verder weg? Hoe?
Kort antwoord: ja.
Lang antwoord: dit is ingewikkeld.
Dit is 'n klassieke probleem met drie liggaamsdele, en 'n ware voorbeeld sou die Sun-Earth-Moon-stelsel wees.
Ongelukkig is daar geen algemene oplossing vir die Newton-swaartekragprobleem met drie liggaamsdele nie, daarom moet ons op spesiale metodes staatmaak vir spesiale gevalle, en selfs dit blyk redelik ingewikkeld te wees.
Die beste antwoord wat ek op u spesifieke vraag op die Sun-Earth-Moon kon vind, is hierdie op Yahoo. Soos u kan sien, is die gevolglike effek 'n ingewikkelde reeks periodieke effekte. Dit is klein, maar nie weglaatbaar nie.
U kan die effek in so 'n stelsel intuïtief visualiseer deur op te let dat die planeet-maanstelsel gewoonlik tot 'n goeie benadering by die ster op 'n aansienlik groter afstand as die planeet-maanafstand sal wentel. Die planeet en die maan wentel self om hul massamiddelpunt. Die relatiewe verskil in gravitasiekragte tussen die posisie waar die maan die verste en die naaste is, gee u 'n rowwe riglyn vir die orde van die effek. Die agterkant van die koevertberekening vir die aarde maak dit ongeveer 1% orde vir die son-aarde-maan.
Ander stelsels sal anders wees, maar daar sal beslis 'n effek wees.
Net om StephenG se antwoord by te voeg, en omdat ek dink dat 'n belangrike punt nie behandel is nie, gee ek die antwoord. Waarskuwing - antwoord is waarskynlik te lank.
1) Ja, dit is ingewikkeld en die wiskunde raak 'n bietjie intens.
2), Soos StevenG opmerk, is dit 'n probleem met 3 liggaamsdele en Die probleem met drie liggaamsdele het geen oplossing nie, maar dit kan in baie gevalle op 'n superrekenaar gebruik word vir miljoene of tienmiljoene wentelbane, en miljoene of tienmiljoene jare met redelike goeie akkuraatheid die toekoms in. Die foutmarge verdubbel mettertyd, dus is daar beperkings aan sulke berekeninge, maar binne hierdie perke kan modelle vir die toekoms van 3-liggaamsbane gemaak word.
3) en my belangrikste punt. Daar is 'n verskil tussen 'n stabiele baan met drie liggaamsdele (Maan wentel om die Aarde, Aarde wentel om die son), en die onstabiele model Dit word gewoonlik in 'n 3-liggaamsprobleem verwys, soos die onderstaande afbeelding van die n-liggaam-probleem in Wikipedia).
Omdat die maan gemaklik binne die werklike gebied van stabiliteit binne die Aarde se heuwelsfeer is, kan sy baan as stabiel beskou word. Uiteindelik is alle bane onstabiel, dus as ek sê dit is stabiel, bedoel ek, dit is honderde miljoene of miljarde jare stabiel. Dit is 'n mooi ronde nommer. Daar word byvoorbeeld verwag dat Phobos binne ongeveer 10 miljoen jaar in Mars sal neerstort of binne die limiet van Mars sal breek. Sommige mense noem dit 'n onstabiele baan, maar 10 miljoen jaar is lank. Daar is geen presiese skeidslyn tussen stabiele en onstabiele wentelbane nie, dit is 'n gemakstydperk, meer as akkuraatheid.
As voorbeeld van Kepler se wette en die Aarde-Maan-Son, beweeg die Aarde-Maan-barycenter in 'n Kepler-baan om die son. In elk geval redelik naby. As u 'n plakker wil wees, wentel dit om die 3-liggaams-barycenter, maar met die massaverhouding van die son tot die Aarde / Maan van ongeveer 330 000 tot 1, is dit redelik naby daaraan om net om die son te wentel. Kepler se wette is redelik naby.
Die Maan wentel nie die aarde in 'n netjiese Kepler-baan nie, omdat die getye van die son belangrik is, wat die elliptiese baan van die Maan mooi uitgerek en wankelrig maak. Dieselfde getye wat oseane op aarde beïnvloed, beïnvloed die maanbaan om die aarde.
Hierdie diagramme is oordrewe, neem dit dan met 'n korreltjie sout, maar dit is die kern van wat die son aan die maanbaan doen. Dit is nog steeds ellipsagtig, maar sigbaar gerek.
Apsidale presessie
Die apsidale presessie van die Maan voltooi elke 8.85 jaar 'n volle 360-siklus of ongeveer 109 sinodiese wentelbane, iets meer as 3 grade af waar dit volgens Kepler se wette per wentelbaan moet wees. Dit is meer as 1000 keer die variasie van Mercurius se presessie, wat sterrekundiges dekades lank verwar het.
Hierdie belangrike maanpresessie is byna geheel en al te danke aan songetye en dit is 'n voorbeeld van hoe songetye die baan van die maan om die aarde beïnvloed. As Venus of Mercurius mane gehad het, sou daardie mane waarskynlik nog groter voorvereistes gehad het.
Veranderinge op lang termyn is nou baie stadiger, aangesien die presessie geneig is om oor tyd te balanseer. Selfs met die aansienlike presessie van die Maan word dit steeds as 'n stabiele baan beskou en is dit gemaklik binne die ware stabiliteitsgebied in die Aarde se Heuwelsfeer. Daar is ook baie min chaotiese onvoorspelbaarheid in die baan van die maan wat tipies is van 'n standaardprobleem met drie liggaam. Dit wil nie sê dat daar niks is nie, daar is nog steeds, maar daar is ook 'n langtermynbestendigheid aan die baan van die Maan. Kyk hier vir 'n baie mooi uiteensetting van die 3-liggaamsprobleem.
Dus, kort verhaal, wat gebeur met 'n gestruktureerde wentelbaan (Sun-Planet-Moon), waar alle wentelbane binne ware streke van stabiliteit is, word ietwat voorspelbaar. Die son steel of verswelg energie uit die planeet-maanbaan as gevolg van die getykrag. Hoe dit gebeur, is moeilik om te verklaar, en miskien is daar 'n kundige wat dit beter kan verduidelik of coole grafika kan gee. Ek het nie daardie vaardighede nie.
Nou is 'steel' miskien 'n slegte woord. Die planeet wentel om die ster en die maan, wentel om die planeet, maar die baan word gerek en deur die getyekrag van die sterre gepers. As u die maan as 'n 'bult' op die planeet beskou, trek die swaartekrag aan die bult en vertraag dit. Maar die effek is redelik klein, want dit bespoedig dit oor die 1/2 baan en vertraag dit gedurende die 2de helfte, maar die de-sirkulasie van die baan as dit bymekaar getel word, is 'n afname in die orbitale energie. oortyd.
Die son doen dit nou aan die Aarde-Maan-stelsel, maar dit is meetbaar kleiner as die Aard-Maan-dinamika wat die Maan ongeveer 3,8 cm per jaar van die Aarde af wegstoot. Met verloop van tyd, namate die aarde sy oseane verloor en die maan effens verder beweeg, sal die soneffek die primêre krag word, wat die maan vertraag na die aarde, maar dit is waarskynlik miljarde jare weg.
'N Alternatiewe manier om hieroor te dink, in plaas van Sun-Planet-Moon, is Planet-Moon-sub-satelliet of, planeet-moon-sub moon. Hierdie model waarvoor ons werklike waargenome data het.
Mane het in die reël nie hul eie mane nie en die rede hiervoor is dieselfde - getykragte. En gemiddeld is die getykrag wat 'n maan van sy planeet ontvang, aansienlik groter as die krag wat 'n planeet van sy ster kry, maar hoewel die getye baie keer sterker is, is die skoolhoof steeds dieselfde.
Sien "Kan mane mane hê". Dr Fraser Cain verduidelik wat gebeur, hy begryp nie die besonderhede waarom (wiskunde verdryf lesers nie). Maar hy verduidelik wat gebeur. Uit sy artikel
Geen satelliet wat ons na die maan gestuur het, het al langer as 'n paar jaar om die baan getrek voordat dit in die maanoppervlak neergestort het nie. In teorie kan u waarskynlik 'n satelliet kry wat 'n paar honderd jaar rondom die Maan sal duur.
Maar hoekom? Hoekom kan ons nie maan vir ons maan maak om 'n eie maan vir altyd te hê nie? Dit kom alles neer op swaartekrag en getykragte. Elke voorwerp in die heelal word omring deur 'n onsigbare swaartekrag. Enigiets binne hierdie bundel, wat sterrekundiges die “heuwelsfeer” noem, sal geneig wees om die voorwerp te wentel.
As u dus die Maan in die middel van die ruimte gehad het, sonder enige interaksie, kan dit maklik verskeie mane hê wat om hom wentel. Maar u kry probleme as u hierdie oorvleuelende invloedsfere het. Die swaartekrag van die Aarde verstrengel met die swaartekrag van die Maan.
Alhoewel 'n ruimtetuig 'n rukkie om die Maan kan wentel, is dit net nie stabiel nie. Die getykragte sal die baan van die ruimtetuig laat verval totdat dit neerstort. Maar verder in die sonnestelsel is daar klein asteroïdes met selfs minder maan. Dit is moontlik omdat hulle so ver van die son af is. Bring hierdie asteroïdes nader aan die son en iemand verloor 'n maan.
Die voorwerp met die grootste heuwelsfeer in die sonnestelsel is Neptunus. Omdat dit so ver van die son af is, en dit so groot is, kan dit die omgewing regtig beïnvloed. U kan u voorstel dat 'n massiewe maan op 'n afstand rondom Neptunus gaan, en rondom daardie maan kan daar 'n eie maan wees. Maar dit blyk nie die geval te wees nie.
NASA oorweeg 'n missie om 'n asteroïde vas te vang en om 'n wentelbaan om die Maan te plaas. Dit sal veiliger wees as om die aarde te laat wentel, maar hou dit steeds naby genoeg om hulpbronne te ontgin. Maar sonder enige vorm van hupstoot, sal die getykragte dit uiteindelik op die maan stort.
Aarde se getykragte sal veroorsaak dat 'n voorwerp in 'n baan om die maan in die maan val. (Die maan se swaartekragtigheid help ook nie - om 'n heel ander rede is albei faktore.)
en die maan se permanente getyvergrendeling op die aarde bemoeilik 'n maanbaan. In 'n sekere sin is daar 'n permanente swaar kant na die aarde en 'n permanente ligkant van die maan wat altyd van die aarde af wys. Sien die artikel hier. Hierdie wanbalans help om onstabiele wentelbane om die Maan te skep.
Hoe massiewer 'n planeet gemiddeld is, hoe meer sferies word dit swaartekragtig (ignoreer rotasiebuiging, maar aangesien die meeste wentelbane ewewydig is, is dit nie 'n probleem nie). Mane en kleiner planete (soos Mars) kan swaartekragterig klonterig wees, wat die wentelbane ietwat minder stabiel maak.
Maar op u vraag: Die sonkrag trek wel mane nader aan hul planete, maar buite Mercurius en Venus is die songety klein genoeg sodat dit nie veel van die faktor is nie. As ons beter kyk na eksoplanete en rooi-dwergsterre met nabye planete, kan ons vind dat mane op daardie planete skaars is as gevolg van die betreklik groter sonkraggetye, maar sulke waarnemings is waarskynlik 'n manier weg. Ek is nie seker dat selfs die James Webb-teleskoop ekso-mane sal identifiseer nie.
Ander soneffekte, soos verdamping / transpirasie van die oppervlak van 'n planeet, sal die planeet ligter maak, dus kan 'n son 'n maan verloor as die planeet massa verloor as gevolg van sonwind. (hierdie effek is redelik stadig - Titan kom by my op as die beste voorbeeld van 'n voorwerp van die sonnestelsel wat massa verloor as gevolg van die sonwind, maar selfs vir Titan is hierdie verlies baie stadig. As Titan 'n maan gehad het, was die sonwind sou veroorsaak dat die maan stadig wegbeweeg (maar Saturnus se swaartekrag sal die maan nader aan Titan trek). In u spesifieke vraag oor Pluto, is dit waarskynlik 'n groter effek as getye, dus veroorsaak die son Charon en Pluto waarskynlik stadig beweeg uitmekaar as gevolg van ontgassing, soos dit genoem word.
As 'n laaste voorbeeld van soneffekte kan gasdruk van 'n ster wat uitbrei, 'n maanbaan laat vertraag en die maan in sy planeet laat neerstort, maar gasdruk word nie verwag voordat ons son 'n rooi reus geword het nie.
Maar die antwoord wat ek dink jy is op soek na is dat songetye mettertyd energie van 'n planeet-maan om daardie ster sal wentel. Soos ek hierbo gesê het. As iemand die wiskunde daaragter kan verduidelik of met grafieke kan wys, voel asseblief vry.
(te lank?)
Hoe beïnvloed sterre die wentelbane van mane? - Sterrekunde
Die son, aarde, maan en alle ander voorwerpe in die sonnestelsel lok mekaar met 'n krag wat swaartekrag genoem word. Hierdie swaartekrag trek slegs aan en stoot nooit af nie en kan oor 'n oneindige afstand optree.
Newton het hierdie krag in sy wet van universele gravitasie verduidelik. Hy het gesê dat almal in die heelal elke ander liggaam aantrek met 'n krag wat eweredig is aan die produk van die massas en omgekeerd eweredig aan die vierkant van die afstand tussen hulle.
Wiskundig kan dit geskryf word as:
Waar M1 en M2 is twee massas en r is die afstand tussen hulle.
G word die genoem universele gravitasiekonstante gravitasie soos gelyk aan 6,67x10 -11 Nm 2 kg -2
Die son is die grootste liggaam in die sonnestelsel. Dit bevat meer as 99% van die massa van die sonnestelsel. Die son met die dominante massa oefen die grootste swaartekrag in die sonnestelsel uit, hou al die ander voorwerpe in 'n wentelbaan en beheer hul beweging.
Die planete beweeg om die son in paaie of wentelbane wat ellips genoem word. 'N Ellips is 'n effens geknypte sirkel. As 'n voorwerp in 'n sirkel beweeg, bly sy snelheid konstant, maar namate die rigting voortdurend verander, is dit ook die snelheid. Dit is omdat snelheid grootte en rigting het, terwyl snelheid net grootte het. Vir 'n voorwerp wat in 'n sirkel beweeg, is 'n krag nodig om die rigting te verander soos gedefinieer deur Newton se eerste bewegingswet. Hierdie krag trek die voorwerp voortdurend na die middelpunt van die sirkel. 'N Krag wat 'n voorwerp na die middelpunt van 'n sirkel trek, word sentripetale krag genoem. Die bron vir die sentripetale krag in die sonnestelsel is die swaartekrag van die son. Sonder die sentripetale krag van die son sou die planete in 'n reguit lyn beweeg. Die snelheid van die planete is hoog genoeg sodat hulle voortdurend na die son versnel sonder om ooit hul wentelbane te verlaat. Dit is om hierdie rede dat die planete nie in die son val vanweë sy sterk aantrekkingskrag nie.
Wat is 'n tweelingvlam?
'N Tweelingvlam is 'n kragtige sielverbinding, wat dikwels 'n' spieelsiel 'genoem word, wat in u lewe kom as u dit die nodigste het.
Volgens verhoudings is dit gebaseer op die idee dat een siel soms in twee liggame verdeel word.
Nou weet ons dat dit 'n bietjie daar buite klink, maar hou ons aan.
Die belangrikste kenmerke van 'n tweelingvlamverhouding is dat dit beide toetsend en inspirerend sal wees.
Die persoon deel moontlik u diepste twyfel en vrese. Maar dit help u ook om te seëvier en omgekeerd.
U tweelingvlam het u net soveel nodig as wat u dit nodig het.
Alicia Coburn
Planets Solar System Pdf: Sonnestelsel aanlyn pdf-aktiwiteit. Spring na navigasie spring om te soek. Sommige van die woorde wat gebruik word, is: Welkom by die planete en die sonnestelsel, die volledige handleiding deur die geskiedenis, die mensdom het opgekyk na die sterre en gewonder wat dit was. Ons sonnestelsel deur dominic fabbri ons sonnestelsel het twee groepe planete, die innerlike planete en die buitenste planete. Die son is in een van die twee sentrums van die sonnestelsel en die planete draai in elliptiese wentelbane.
Die sonnestelsel bestaan uit al die planete wat om die son wentel: Planete wentel ongeveer in die ekliptiese vlak. Studente leer oor die sonnestelsel en ken die name van die agt planete en hul volgorde. Twee van die buitenste planete anderkant die baan van Mars & # 8212. Die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ten spyte van die lang tussenperiode bestaan daar steeds verskeie leidrade oor die vorming daarvan.
Feite van planete - Interaktiewe werkblad van www.liveworksheets.com Ubuntu die volledige handleiding 2016. Die sonnestelsel bestaan uit al die planete wat om die son wentel: die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ondanks die lang tydsduur, daar bestaan nog verskeie leidrade oor die vorming daarvan. U kan dit in 3D-weergawe gebruik, of net in enige beeldkyker oopmaak en die oppervlak van planete verken. Twee van die buitenste planete anderkant die baan van Mars & # 8212. Planeet aarde in die ruimte (die aarde, maan en sonnestelsel spesifiek vir 5de / 6de klas) is 5 gasheerstermetalliteite as 'n funksie van planetêre massas. Slegs die grootste mane is.
Kom ons kyk na 'n paar vinnige feite oor die.
Die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ten spyte van die lang tussenperiode bestaan daar steeds verskeie leidrade oor die vorming daarvan. Ons sonnestelsel deur dominic fabbri ons sonnestelsel het twee groepe planete, die innerlike planete en die buitenste planete. Spring na navigasie spring om te soek. Die sonnestelsel bestaan uit al die planete wat om die son wentel: tot dusver, en hoeveel meer kennis gaan nog voorlê. 'N Noodsaaklike gids tot ons sonnestelsel. Ubuntu die volledige handleiding 2016. U kan foto's van die planete en die sterrestelsel in volle kleur sien. Planeet aarde in die ruimte (die aarde, maan en sonnestelsel spesifiek vir 5de / 6de klas) is 5 gasheerstermetalliteite as 'n funksie van planetêre massas. Ons sonnestelsel het ongeveer 4,6 miljard jaar gelede ontstaan. Planete wentel ongeveer in die ekliptiese vlak. Kopiereg 2012 a tot z onderwyserstowwe, llc www.atozteacherstuff.com.
5 gasheerstermetalliteite as 'n funksie van planetêre massas. Fotovoltaïese sonenergie en huishoudelike water 'n tegniese en ekonomiese gids vir projekbeplanners, bouers en eienaars van eiendom deur russel h. Die sonnestelsel bestaan uit al die planete wat om die son wentel: Planete wentel ongeveer in die ekliptiese vlak. Ubuntu die volledige handleiding 2016.
Die planete in ons sterrekunde-werkblad vir die sonnestelsel. van data.formsbank.com Planeet aarde in die ruimte (die aarde, maan en sonnestelsel spesifiek vir 5de / 6de klas) Die sonnestelsel bestaan uit die son en sy agt hoofplanete, hul satelliete, asteroïdes, komete, meteore en ander dwergplanete . Elke planeet draai op sy eie as terwyl dit om die son draai. Ingenieursboeke pdf bevat 19 sonnestelselplanete pdf vir gratis aflaai. Die sonnestelsel is 'n wonderlike en komplekse netwerk van planete, sterre, mane, asteroïdes en selfs geheimsinnige swart gate. 6 planete in die bewoonbare sone van. Van die woorde wat gebruik word, is: Daar is 8 planete in die sonnestelsel.
Planete wentel om die son.
Mane word naby hul planete gelys na aanleiding van hul wentelbane Tot dusver, en hoeveel meer kennis gaan nog voorlê. Planeet aarde in die ruimte (die aarde, maan en sonnestelsel spesifiek vir 5de / 6de klas) U kan die oefeninge aanlyn doen of die werkblad as pdf aflaai. 'N Noodsaaklike gids tot ons sonnestelsel. Die sonnestelsel is 'n wonderlike en komplekse netwerk van planete, sterre, mane, asteroïdes en selfs geheimsinnige swart gate. Daar is 8 planete in die sonnestelsel. Soms gebruik ons 'n geheue-toestel genaamd geheue-geheue. Ess.10.1.1 illustreer die volgorde van planete in die sonkrag. Planete wentel ongeveer in die ekliptiese vlak. Ons sonnestelsel is so groot dat dit amper onmoontlik is om die grootte voor te stel as u gewone eenhede soos voete of kilometers gebruik. Die son hou hierdie komplekse rangskikking in orde. 5 gasheerstermetalliteite as 'n funksie van planetêre massas.
'N Noodsaaklike gids tot ons sonnestelsel. Ja, wetenskap kan pret en maklik gemaak word! Besef dat die aarde, sy & # 8226, u klas aan die name en kenmerke van al die planete in die sonnestelsel bekendstel met behulp van hierdie Europese ruimteagentskapbron (onderwysersgids en. 'N Aparte afstandskaal is onderaan. Dit maak nie saak nie as jy tien of vyftig is, dink jy net aan die sterre en die moontlikhede.
Laat planeet 9 ons sonnestelsel wankel? - Wetenskap. van blogs.voanews.com As gevolg van 'n hoër ashelling, staan dit ook bekend as & # 039liggende planeet & # 039. U kan foto's van die planete en die sterrestelsel in volle kleur sien. Kom ons kyk na 'n paar vinnige feite oor die. Planete wentel om die son. Twee van die buitenste planete anderkant die baan van Mars & # 8212. Definisie van 'n planeet in die sonnestelsel. Die uitleg gaan beslis 'n kind verbaas en verbly. Die sonnestelsel bestaan uit die son en sy agt hoofplanete, hul satelliete, asteroïdes, komete, meteore en ander dwergplanete.
Die son is in een van die twee sentrums van die sonnestelsel en die planete draai in elliptiese wentelbane.
Hallo, ek het probeer om die sonnestelsel pdf in beide chroom en ander af te laai, kon dit nog nie kry nie. Hierdie teksture stel regte planeetkaarte voor in ekwatoranguële projeksie. Daar is 8 planete in die sonnestelsel. Die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ten spyte van die lang tussenperiode bestaan daar steeds verskeie leidrade oor die vorming daarvan. Planete naaste aan die son & # 8212 kwik, venus, aarde en mars & # 8212 word die aardplanete genoem omdat hulle soliede, rotsagtige oppervlaktes het. Hierdie boek bevat die sonnestelsel in al sy glorie. Ons sonnestelsel het ongeveer 4,6 miljard jaar gelede ontstaan. Ri.1.2 identifiseer die hoofonderwerp en vertel die sleutelbesonderhede van 'n teks weer. Besef dat die aarde, sy & # 8226, jou klas bekendstel aan die name en kenmerke van al die planete in die sonnestelsel deur gebruik te maak van hierdie Europese hulpbron vir ruimteagentskappe (onderwysersgids en. 'N noodsaaklike gids tot ons sonnestelsel. Speel 'n sentrale rol in mitologie , filosofie en bygeloof, was dit tot die opkoms van die sterrekunde dat ons hierdie hemelliggame begin verstaan het. Ingenieursboeke pdf het 19 sonnestelselplanete pdf vir gratis aflaai. geïntegreerde geheel (wikipedia).
4 die sonnestelsel die son ('n ster) die planete asteroïdes kuiper gordel voorwerpe komete stof (zodiacal light) interackons: Ubuntu die volledige handleiding 2016. Copyright 2012 a to z teacher stuff, llc www.atozteacherstuff.com. Kom ons kyk na 'n paar vinnige feite oor die. 3 planetêre stelsels in die gekombineerde monster.
5 gasheerstermetalliteite as 'n funksie van planetêre massas. Fotovoltaïese sonenergie en huishoudelike water 'n tegniese en ekonomiese gids vir projekbeplanners, bouers en eienaars van eiendom deur russel h. Sommige van die woorde wat gebruik word, is: 4 statistiese ontleding van die steekproef. Spring na navigasie spring om te soek.
Gratis sonnestelselaktiwiteite en klaskamerbronne! Die uitleg gaan beslis 'n kind verbaas en verbly. Hierdie eenheid openbaar gedetailleerde feite oor ons son. U kan die oefeninge aanlyn doen of die werkblad as pdf aflaai. Ubuntu die volledige handleiding 2016.
Wat is die dele van die sonnestelsel en hoe vergelyk dit? Dit is die planeet wat die naaste aan die son is. U kan die oefeninge aanlyn doen of die werkblad as pdf aflaai. Ja, wetenskap kan pret en maklik gemaak word! 6 planete in die bewoonbare sone van.
Mane word naby hul planete gelys op afstand van hul wentelbane 4 die sonnestelsel die son ('n ster), die planete asteroïdes kuipergordel voorwerpe komete stof (sterreteken) interakons: Ja, die wetenskap kan pret en maklik wees! As gevolg van 'n hoër ashelling, staan dit ook bekend as & # 039die planeet & # 039. Van Wikimedia Commons, die gratis media-bewaarplek.
'N Noodsaaklike gids tot ons sonnestelsel. Omdat ons 'n sentrale rol in mitologie, filosofie en bygeloof gespeel het, het ons tot die opkoms van die sterrekunde hierdie hemelliggame begin verstaan. Ja, wetenskap kan pret en maklik gemaak word! Wat is die dele van die sonnestelsel en hoe vergelyk dit? Definisie van 'n planeet in die sonnestelsel.
Gratis sonnestelselaktiwiteite en klaskamerbronne! Melkweg, satelliet, planeet en jupiter. 'N Stelsel is 'n stel interak + ng of interafhanklike komponente wat 'n geïntegreerde geheel vorm (wikipedia). Hoe kan u die planete onthou? Ess.10.1.1 illustreer die volgorde van planete in die sonkrag.
6 planete in die bewoonbare sone van. Swaartekrag laat planete om die son wentel. Slegs die grootste mane is. Hierdie gratis sonnestelselaktiwiteit is ideaal om kleuters te leer oor die planete en hoe die sonnestelsel werk. Omdat ons 'n sentrale rol in mitologie, filosofie en bygeloof gespeel het, het ons tot die opkoms van die sterrekunde begin om hierdie hemelliggame te verstaan.
Die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ten spyte van die lang tussenperiode bestaan daar steeds verskeie leidrade oor die vorming daarvan. Mane word naby hul planete gelys in die nabyheid van hul wentelbane van 5 gasheersterre as 'n funksie van planetêre massas. Hierdie gratis sonnestelselaktiwiteit is ideaal om kleuters te leer oor die planete en hoe die sonnestelsel werk. Drukbare werkkaarte oor die sonnestelsel en planete wat u saam met u klas kan gebruik.
4 statistiese ontleding van die steekproef.
Die son, planete, dwergplanete en mane is op skaal vir hul relatiewe groottes, nie vir afstande nie.
Elke planeet draai op sy eie as terwyl dit om die son draai.
U kan dit in 3D-weergawe gebruik, of bloot in enige beeldkyker oopmaak en die oppervlak van planete verken
Hierdie eenheid openbaar gedetailleerde feite oor ons son.
Die son is een van die twee sentrums van die sonnestelsel en die planete draai in elliptiese wentelbane.
3 planetêre stelsels in die gekombineerde monster.
Ons sonnestelsel deur dominic fabbri ons sonnestelsel het twee groepe planete, die innerlike planete en die buitenste planete.
Elke planeet het unieke eienskappe en eienskappe wat dit onderskei van die res.
Planetêre wentelbane is effens ellipties en byna sirkelvormig.
Elke planeet het unieke eienskappe en eienskappe wat dit onderskei van die res.
Planete naaste aan die son & # 8212 kwik, venus, aarde en mars & # 8212 word die aardplanete genoem omdat hulle soliede, rotsagtige oppervlaktes het.
Hierdie teksture stel regte planeetkaarte voor in ekwatoranguële projeksie.
4 die sonnestelsel die son ('n ster) die planete asteroïdes kuiper gordel voorwerpe komete stof (sterreteken) interakkons:
3 planetêre stelsels in die gekombineerde monster.
Drukbare werkkaarte oor die sonnestelsel en planete wat u saam met u klas kan gebruik.
Die son hou hierdie komplekse rangskikking in orde.
Die sonnestelsel het ongeveer 4,56 uur gelede begin vorm, en ten spyte van die lang tussentyd bestaan daar steeds verskeie leidrade oor die vorming daarvan.
Dit maak nie saak of u tien of vyftig is nie, net om aan die sterre te dink en die moontlikhede vul die gedagtes met.
Waarom wentel alles in ons sterrestelsel om die supermassiewe swart gat in die middel?
Streng gesproke wentel alles in ons sterrestelsel nie om die supermassiewe swart gat in die middel nie. Alles in die sterrestelsel wentel om die massamiddelpunt van die sterrestelsel. Die supermassiewe swart gat is toevallig in die middel. As die swart gat in die middel verwyder word, sal die galaktiese wentelbane van byna alle voorwerpe in die sterrestelsel nie verander nie (behalwe vir die paar sterre wat baie naby aan die swart gat is). Ons sterrestelsel bevat baie massa, wat sterre, gas, planete en donker materie insluit. Die swart gat in die middel is slegs ongeveer een miljoenste van die totale massa van ons sterrestelsel. Omdat massa swaartekrag veroorsaak, en swaartekrag wentelbane, word die galaktiese baanpaaie van alle voorwerpe in die sterrestelsel veroorsaak deur die totale massa van die sterrestelsel en nie die massa van die swart gat in die middel nie.
Beskou hierdie analogie. Drie meisies vorm 'n sirkel en sluit almal hul hande in die middel van die sirkel. Hierdie meisies hardloop nou vinnig en bestendig om hul sirkel sodat hulle die spanning in hul arms kan voel. Al voel hulle hoe die sentrifugale krag hulle na buite stoot, vlieg hulle nie weg nie omdat hul gekoppelde arms na binne trek. Die meisies is almal in 'n sekere sin in 'n wentelbaan om hul gesamentlike massamiddelpunt. Hulle wentel nie om die goue ring aan die vinger van een van die meisies nie, wat toevallig in die middel van hul sirkel is. As sy haar ring uittrek, sal hul beweging nie veel verander nie. Die meisies is soos die voorwerpe in ons sterrestelsel, hul gekoppelde arms is soos die swaartekrag wat alles aan mekaar verbind, en die goue ring is soos die swart gat. Elke voorwerp in die melkweg is in 'n wentelbaan om die middel van die gekombineerde massa van die sterrestelsel. Die middelpunt van die massa word dikwels die "barycenter" genoem.
Oor die algemeen wentel klein liggame nie om groot liggame nie. In plaas daarvan wentel groot en klein liggame saam om hul gesamentlike massamiddelpunt. In die handboek "Orbital Mechanics" deur Tom Logsdon word opgemerk: "Newton het ook die eerste wet van Kepler aangepas deur op te let dat as albei die betrokke twee liggame 'n aansienlike massa het, sal die kleiner liggaam nie om die middelpunt van die groter liggaam wentel nie. 'n soortgelyke verskynsel kan opgemerk word tydens 'n sokkerwedstryd. As 'n majorette haar stokkie in die lug gooi, draai dit nie om die swaar einde nie. In plaas daarvan draai die hele stok om sy massamiddelpunt . "
Die sonnestelsel en oerknal
Die Clementine-ruimtetuig het hierdie portret van die maan & # 8217s naby kant geneem in die middel van die 1990's. Helde lyne spruit uit die Tycho-krater (naby die bodem). Krediet: Stereografiese raamwerk met vergunning van R. Cowen Inset Images: NASA
Wat die vroeë geskiedenis van die sonnestelsel betref, moet planetêre wetenskaplikes met 'n geval van amper geheime geheueverlies te kampe hê.
Alhoewel die sonnestelsel amper 4,6 miljard jaar gelede gevorm het, het navorsers 'n redelike goeie rekord wat slegs 3,9 miljard jaar teruggaan. Die eerste 700 miljoen jaar was egter van kritieke belang vir alles wat volg. Dit is toe dat die planete saamgeval het en water en ander verbindings wat noodsaaklik is vir die lewe, aan die innerlike planete gelewer is.
Wat meer is, volgens 'n toonaangewende teorie wat nou breedvoerig ondersoek word, is die vroeë era beperk deur 'n werklike rampspoedige gebeurtenis. Ongeveer 3,9 miljard jaar gelede het die beweging van die mees massiewe planete die buitenste sonnestelsel dramaties herrangskik. Die verskuiwende planete het rotsagtige en ysige liggame van die sonnestelsel se rand bevry en begin met 'n bombardement op die hele planete.
Die invul van die besonderhede van hierdie gewelddadige era in die ontwikkeling van die sonnestelsel het ernstige struikelblokke tegemoet gekom. Op die aarde en baie van die ander planete, het miljarde jare van vulkaniese uitbarstings, skuddings, erosie en begrafnisse vaste bewys van die sonnestelsel se vroegste hoofstukke uitgewis. Maar die aarde se kratervormige maan, rustig en gebrek aan 'n atmosfeer wat inkomende ruimtelike puin kan vernietig, blyk 'n seldsame en nabygeleë uitsondering te wees.
Nou het nuwe waarnemings en herontleding van data oor ou maan, tesame met die vordering van teoretici, die belangstelling in die rekonstruksie van die gebeure van die sonnestelsel se voorouderdom hernu.
"As ons die [vroegste] jare van die sonnestelsel nie verstaan nie, verstaan ons nie regtig hoe die planete gevorm het, en waar ons vandaan kom nie," sê Bill Hartmann van die Planetary Science Institute in Tucson. "En dit is van toepassing op beide biologie en hoe planetêre stelsels daar uitsien, en watter fraksie van die planete [buite die sonnestelsel] bewoonbaar kan wees."
Planetêre wetenskaplikes, sê Bill Bottke van die kantoor van die Southwest Research Institute in Boulder, Colo, het aanvanklik vermoed dat die sonnestelsel inderhaas grootgeword het, 'met alles wat u vandag sien, is reeds 'n paar miljoen jaar na die geboorte van die sonnestelsel in plek. . Maar ons oorweeg nou die moontlikheid dat die sonnestelsel homself ongeveer 3,9 miljard jaar gelede letterlik herskik het. '
Teoretici en waarnemers het verlede November by die Lunar and Planetary Institute in Houston in November byeengekom vir 'n seldsame vergadering waarin hulle vasgestel het wat elkeen oor die sonnestelsel se vroeë geskiedenis opgetel het. "Ons het twee gemeenskappe wat uit verskillende perspektiewe dieselfde probleem het," sê Don Bogard van die NASA se Johnson Space Center in Houston.
Op die vergadering het die waarnemers nuwe ontledings aangebied van data wat die eerste keer byna 40 jaar gelede versamel is toe die Apollo-ruimtetuig op die maan beland en maanrotse teruggebring het - een van die bes bewaarde rekords van die sonnestelsel se onstuimige eerste 700 miljoen jaar. Theorists presented their latest version of a theory that could account for several unexplained features of the solar system, including the violent era between 4 billion and 3.9 billion years ago known as the late heavy bombardment, when the planets were pelted with debris. And researchers reported evidence that if life had existed on Earth before that, the cataclysm might not have wiped out all organisms but could have spared primitive forms that thrived in hot, water-rich environments.
Many of the new studies focus on events that gave the final touches to the architecture of the solar system — events that took place just a few hundred million years after the planets had coalesced from the primordial disk of gas, dust and ice believed to have swaddled the infant sun. The planet-forming process probably took only a few tens of millions of years, and by 50 million to 60 million years after the birth of the solar system, the orbs had pretty much grown to their present size.
Hartmann says it’s unclear whether the solar system suffered a high rate of bombardment by space debris continuously during its first 700 million years or whether activity suddenly spiked at the 700-million–year mark. But mounting evidence points to an abrupt lunar smack down. Several huge impact basins on the moon, dating to about 3.9 billion years ago, bear witness to this bombardment.
“When the Apollo astronauts brought back samples, it was quickly realized that all the circular features up there were in fact impact craters,” says David Kring of the Lunar and Planetary Institute. Moreover, the ages of a large variety of moon rocks date from 4 billion to 3.9 billion years ago. In addition, the rocks suggest the moon’s crust underwent intense heating in the same time period.
The combined evidence prompted researchers to coin the phrase “lunar cataclysm” for the pummeling the moon apparently received.
Initially, some researchers worried that because all the Apollo craft, as well as the Soviet Luna missions, had landed in the same general area on the moon, the lunar samples collected could reveal what had happened only over a small region, about 4.5 percent of the lunar surface.
But that earlier criticism, Kring says, was superseded by a mother lode of lunar meteorites found in Antarctica in the 1990s. Those chunks of rock, presumably from all parts of the moon, showed the same time signature as the Apollo rocks, Barbara Cohen, now at NASA’s Marshall Space Flight Center in Huntsville, Ala., and her colleagues found.
Click here for larger image. Credit: Illustration: Mark A. Gerlick / space-art.co.uk Graph: D. Kring Simulations: Adapted from Gomes et al./Nature 2005
Birth of a cataclysm
A simulation of the outer solar system’s early evolution known as the Nice model tracks the planets’ orbits from soon after the birth of the solar system through the period of late heavy bombardment and beyond. At the simulation’s start, a massive reservoir of icy debris, a forerunner of today’s Kuiper Belt, lies beyond the outer planets.
4.5 billion years ago
Early on, the four outermost planets follow circular orbits, packed closely together within a large disk of icy debris (shown in gray), leftovers from planet formation.
3.9 billion years ago
As the planets spread out, the orbits of Jupiter and Saturn fall into lockstep. Ultimately, the changed orbits of these two giants greatly alter the orbits of Neptune and Uranus.
3.9 billion – 3.8 billion years ago
Uranus and Neptune ram into the icy reservoir. The debris zooms into the inner solar system, where it catastrophically collides with the moon, Earth and the other planets (artist’s depiction at far left).
3.65 billion years ago
The outer solar system settles into its current configuration. The impacts left behind on the moon are now providing clues to the history of the solar system.
Theory enters the act
Early this decade, theorists Harold Levison of the Southwest Research Institute’s Boulder office and his colleagues, including Alessandro Morbidelli of the Côte d’Azur Observatory in Nice, France, were puzzling over a different problem. They were trying to understand the formation and evolution of the outer solar system. The team’s computer simulations showed that two of the planets plowed into a ring of icy leftovers from the planet-forming process, scattering the debris. This disruption and its aftermath, the researchers later realized, would have had a profound effect on the entire system.
At the Lunar and Planetary Institute meeting, Levison and Bottke presented the latest version of the theory, known as the Nice model (SN: 5/28/05, p. 340) because of Morbidelli’s contributions.
In the theory, the four biggest planets — Jupiter, Saturn, Neptune and Uranus — initially had sedate, circular orbits and were packed into a region only about half the diameter of Neptune’s average modern orbit. Gravity then caused these bodies to spread out and break into a planetary version of bowling that not only violently rearranged the outer solar system but also led to an avalanche of debris pelting the inner planets and their moons.
Prompting this melee, scientists propose, was a series of gravitational interactions between the planets and the hefty disk of debris that lay just beyond. This disk, a forerunner of the Kuiper Belt, contained as much mass as 35 Earths.
For a while, not much happened. Jupiter moved slowly inward while the three other planets moved slightly outward. Then, at about 500 million to 600 million years after the birth of the solar system, Jupiter and Saturn hit a gravitational sweet spot, with Jupiter going around the sun twice for every orbit of Saturn.
In this configuration, known as an orbital resonance, the mutual gravitational influence of the two giants strengthened, elongating their orbits over time. The changed paths of Jupiter and Saturn eventually jumbled the orderly, circular orbits of the two lighter-weight, outermost giants, Uranus and Neptune. And that’s when all hell broke loose, Levison says.
Within a few million years, Uranus and Neptune were kicked so far out that they plowed into the surrounding disk of icy debris. Like bowling balls scattering pins, the two planets scattered the debris all over the solar system.
Some of the debris became trapped by Jupiter’s gravity and could account for the planet’s retinue of Trojan asteroids, a group of objects that lead and trail the planet today, and have not been explained by any other theory, says Levison.
Some of the scattered material traveled farther, penetrating deep into the inner solar system, the simulation suggests. It was this debris that pummeled Earth’s moon during a geologically brief window of time that lasted only 100 million to 200 million years.
Indeed, this onslaught may well have generated the cataclysmic late heavy bombardment, in which Earth’s moon and the inner planets were blasted with debris, Levison says. The cataclysm generated by the Nice model “is consistent with the magnitude and duration of the late heavy bombardment inferred from lunar craters,” Bottke and his colleagues noted in an abstract from the meeting.
In this way, a fracas originally limited to the outermost regions ended up affecting the entire solar system.
Planetary scientists have recently gathered evidence that the asteroid belt, located between the orbits of Mars and Jupiter, also took a direct hit during the late heavy bombardment. An analysis of meteorites believed to be fragments of Vesta, the second largest asteroid, reveal that they, too, suffered an intense bombardment about 3.9 billion years ago, Bogard notes. In addition, the famous Mars meteorite ALH84001, which dates from about 4.5 billion years ago and was once believed to contain fossils of nanobacteria, also shows signs that it suffered a major impact 3.9 billion years ago.
But even on Earth, not all of this early history was erased, new research shows. The first era on our planet is called the Hadean period as in Hades, or hell. However, studies now show that this might not have been such the hellish period — impossibly hot and dry — that many researchers had imagined, says Stephen Mojzsis, a geochemist at the University of Colorado at Boulder.
The clues come from ancient zircons — durable and chemically inert minerals that are remnants of Earth’s first rocks.
Discovered about 25 years ago in the Jack Hills region of western Australia, the zircons are no bigger than the size of President Lincoln’s eyeball engraved on a penny. They are up to 4.38 billion years old, predating by several hundred million years the era of the late heavy bombardment (SN: 1/3/09, p. 10).
“These zircons are our only [terrestrial] record keeper … because Earth is constantly trying to recycle itself,” says Mojzsis. Withstanding weathering, erosion, burial, subduction and remelting, these hardy minerals are filling in a missing era of Earth’s early history when the crust, atmosphere and oceans were established, along with, perhaps, the very first biological systems.
The chemical information encoded in the zircons, says Mojzsis, suggests that Earth not only had crust during the Hadean, which some researchers had doubted, but that the crust was derived in part from granite. The formation of granite, he says, requires liquid water.
“The picture that’s now emerging about the early Earth, based on the analysis of about 100,000 grains from the Jack Hills area, is a watery world with more similarities than differences with today,” Mojzsis says. That means, he adds, that even in that early era, Earth may have possessed properties conducive to life.
Recent studies have revealed that the zircons have tiny zones, or mantles, about 2 to 4 micrometers across, which suggest the minerals were shock heated 3.96 billion years ago. That shock event may be evidence of the late heavy bombardment as it played out on Earth, Mojzsis says.
At the Houston meeting, he reported that such heating can best be explained by a massive impact event that cauterized the outermost parts of the zircons over a matter of days. This kind of heat loss, he says, has only been seen in lunar rocks that have undergone shock heating.
Mojzsis and his colleagues are planning to reanalyze ancient zircons found in moon rocks, using tools that can resolve features 100 times finer than previously possible, to look for evidence that these lunar zircons were also shock heated.
All this feeds back into the Nice model. “The model is extremely powerful … but it doesn’t tell us when the [late heavy bombardment] happened,” says Mojzsis. “That’s where people like me come along, to say, ‘Here is the time at which we see events consistent with the first wave of impactors.’”
The zircon studies on Earth provide “an emphatic no” to the question of whether the late heavy bombardment destroyed all life, he says. In recent simulations of Earth during Hadean times, Mojzsis and Oleg Abramov, also at the University of Colorado at Boulder, “have bombarded the crust with basically everything we could throw at it within reason, based on the Nice model and the lunar record,” Mojzsis says. “We cannot sterilize the Earth, even at 10 times the accepted bombardment rate” associated with the late heavy bombardment, he says.
The late heavy bombardment didn’t destroy organisms wholesale, “but it may have pruned the tree of life,” he says, selecting for organisms that could survive high-temperature, hydrothermal environments. Indeed, many believe the oldest forms of microbial life “are things that live in hot spring environments, so-called hydrothermophiles,” he says.
To learn more about how the era of late heavy bombardment put the finishing touches on the assembly of the solar system, spacecraft will have to return to the moon, says Levison. A manned mission isn’t necessary, he says, but a robotic craft that can bring back rocks from regions of the moon not yet directly sampled will be essential to better probe the solar system’s early history. Under President George W. Bush, NASA was directed to head back to the moon with both robotic and manned missions, but the fate of that program is now uncertain.
“I think the next few years is going to be a lot like the years preceding the Apollo program, when money was spent to educate people about what was going to happen in July 1969 but also to prepare the laboratories and invest in new techniques,” Mojzsis says. “We have a huge collection of [lunar] Antarctic meteorites at NASA, and I plan to investigate those until we get samples back from the south pole of the moon.”
How do stars affect the orbits of moons? - Sterrekunde
Well, not quite, but he came close.
I was recently asked about the claim that Swift wrote about the moons of Mars in Gulliver’s Travels, published in 1726, and that he knew that there were two moons and exactly described their size and orbital period. The implication is that Swift somehow knew about the moons of Mars, Phobos and Deimos, a century and a half before they were discovered. It turns out that his predictions, if you can call them that, were accurate enough to be an interesting coincidence, but not so close that we have to consider it anything but that.
Gulliver’s Travels
If you have never read this book, I highly recommend it. The animated and live-action movies are fun for kids, but they contain almost none of the biting social satire, and generally leave out the most interesting parts of the book.
After Liliput and before Brobdingnag (the diminutive and giant lands shown in the movies), Gulliver visited Laputia, a floating island of crazy scientists. My favorite is the scientist who was trying to figure out how to get sunshine out of food by running it backwards through the digestive system. Gulliver was speaking of the Laputian astronomers when he noted:
They have likewise discovered two lesser stars, or satellites, which revolve around Mars, whereof the innermost is distant from the center of the primary exactly three of his diameters, and the outermost five: the former revolves in the space of ten hours, and the latter in twenty-one and a half.
Phobos and Deimos
The two moons of Mars, Phobos and Deimos, were discovered by Asaph Hall, Sr. on August 12, 1877. He was actively looking for Martian moons so it was no accident. This was 151 years after Gulliver’s Travels. Phobos means fear and Deimos panic – the names of the horses that pulled the chariot of the God of War – Ares. Ares is the Greek name for the Roman god Mars.
They are both small rocks of similar composition to asteroids, and so one hypothesis is that they are captured asteroids from the nearby asteroid belt. It is also possible that they formed in orbit – this is an unresolved question.
Phobos and Deimos have orbits which are about 1.4 and 3.5 diameters from Mars’ center respectively. The Laputians gave figures of 3 and 5. The periods of Phobos and Deimos are 7.7 and 30.3 hours, respectively, while the Laputians reported 10 and 21.5.
These figures are correct to within an order of magnitude, which is another way of saying that they are wrong. They are reasonable guesses, obviously, but do not betray any special knowledge. If Swift somehow knew what the figures were to any accuracy why wouldn’t he give them? Why get them close but not very close? It is a funny coincidence that he got as close as he did, but given all the opportunities for literary fiction to somewhat loosely match later scientific discoveries, the odds favor the occasional good guess.
It is also possible that Swift followed the basic logic that Mercury and Venus have no moons, the Earth has one, and Jupiter and Saturn have many. Mars is between Earth and Jupiter, so maybe it has two. There is some sense to this logic as it is probable that the farther away a planet is from the sun the more likely it is to hold moons. Too close, and the sun will grab them. The Earth’s moon is likely the result of a chance collision. While Mars is far enough away, and close enough to the asteroid belt, to have picked up a couple of moons.
It is also possible that Swift got the idea from Kepler, who in turn came to the conclusion that Mars had two moons because he misunderstood a cryptic anagram of Galileo’s. According to this reference:
In reality, the idea that Mars might have two satellites goes back to Johannes Kepler’s 1610 memoir, in which he misconstrued Galileo’s anagram to his friends announcing his discovery of Saturn’s rings. The anagram was:
s m a i s m r m i l m e p o e t a l e u m i b u n e n u g t t a u i r a s
the correct solution of which was:
Altissimum planetam tergeminum observavi. “I have observed the highest (most distant) planet [Saturn] to have a triple form.”
Kepler, a born riddle solver, made strenuous efforts to decipher Galileo’s string of characters, but he misconstrued the scrambled message to mean:
Salue umbistineum geminatum Martia proles. “Hail, twin companionship, children of Mars”, or “I greet you, double knob, children of Mars”.
That would be an interesting coincidence also – getting the answer right for the wrong reasons, but nothing extraordinary.
Of course, once the notion that Swift “knew” of the moons of Mars prior to their discovery got out, cranks of all kinds jumped on this misinformation to suit their needs. One interesting one comes from the oxymoronic creationdiscovery website. Here’s what these geniuses have to say:
It is obvious from the results that Swift’s values were not mere guesswork. Seeing the moons of Mars requires substantial telescopic equipment, or a spacecraft flyby such as the Mariner and Viking spacecraft of the 1970s. Measuring the orbital periods of these moons cannot be done from Earth with our best equipment today. Either this was knowledge that God revealed to the ancients, such as Job, or it is possible that Earth people once saw Mars through very sophisticated astronomical equipment, that is beyond anything that we have at present. During the first millennium or so after God created these super intelligent beings called Adam and Eve, many scientific and technological achievements were probably made like this.
Again this evidence supports the creation view instead of the evolution view that shows people becoming more and more technically able. In reality in many ways we are less technically able than human beings of thousands of years ago. This is the view that would be predicted by creationist views of history, based on Biblical teachings.
I always admire the almost preternatural ability of creationists to pack so many logical fallacies into so few words.
To honor Swift, and also Voltaire, who wrote in Micromegas, published in 1752, about Mars having two moons, two craters on Deimos are named after Swift and Voltaire. This is a fitting tribute. It is cool that one day people living on Mars will be familiar with many geological features of their world and its moons that have curious names with interesting histories. Future scholars will enjoy knowing how the Swift crater got its name, like people today like such place-name trivia as how the state of Connecticut got it’s name. (It’s the Algonquian name for the Connecticut river – quinnitukqut.)
6. Bound Rotation
Regular moons are moons with roughly circular orbits (i.e., with small eccentricity) roughly above the planet's equator (i.e., with a small inclination), that traverse their orbit in the same direction as the rotation of the planet around its axies. Such moons were likely formed together with their planet.
Of all regular moons in our Solar System, only moon Hyperion of planet Saturn does not always show the same face to its planet. All other regular planets do always show the same face to their planet. Dit word genoem bound rotation, and means that the rotational period of those moons (around their axis of rotation) is equal to their orbital period (around their planet). The rotation of Hyperion around its axis is chaotic, and predictable for only a short time. There appears to be a combination of causes for this: Hyperion has a very irregular shape (clearly not spherical), has a moderately varying distance to its planet (an eccentricity of 0.12, quite high for a regular moon), and its orbit is near to that of a far larger Moon (Titan).
Irregular moons (with a strongly inclined orbit and/or a strongly eccentric orbit and/or orbiting counter to the direction in which the planet orbits around its axis) are often very far from their planet, where tidal forces are much weaker and haven't had enough time to lock the rotation of the Moon around its axies to its motion around the planet.
Our Moon is a relatively large Moon near a not-so-large planet, so it is relatively more difficult for the tidal forces of the Earth upon the Moon to change the rotation of the Moon around its axis than it is for a moon that is smaller or near a larger planet ― which means most moons. Yet even the rotational period of the Moon is already equal to its orbital period. I don't consider it remarkable that nearly all regular Moons always show the same face to their planets.
The ever-shifting moon has a powerful influence on planet Earth. It directs the tides and stabilizes our climate by regulating the wobble of the Earth on its axis. In astrology, the moon plays a similar role, directing the flow of our emotions and our internal temperatures. Someone with an Aries moon, for example, may heat up quickly, while a Scorpio moon is like an active volcano—their feelings simmering below the surface until they suddenly erupt!
Every heavenly body is said to “rule” a zodiac sign. The moon governs Cancer, the sign associated with women, the mother, the home and our general sense of security. Understanding your moon sign can help you navigate relationships with all the ladies in your life. It may also define how well you get along with mother. A Gemini moon, for example may be BFFs with your mom, while a Taurus moon may long for stability and consistency from dear mama.
The moon changes signs every 2.5 days, transiting through all 12 zodiac signs in 27.5 days. Our changeable moods are governed by Luna—the Roman goddess who represents the moon. The moon is often thought of as the counterpart to the Sun: el Sol is expressive while la luna is receptive. The Sun’s energy radiates outward, while the moon processes all that heat and energy coming our way. What pushes your buttons? Where are you most sensitive? And how much emotion do you reveal? A measured Capricorn moon may view feelings as something to be controlled, while a compassionate Pisces moon may have #NoFilter, and weep openly at a moment’s notice.
Do you need a lot of verbal reassurance (Scorpio moon) or do you feel loved when people encourage us to take risks and shine (Leo moon)? Can you be comfortable with home on the road (Sagittarius moon) or do you require a well-appointed sanctuary (Cancer moon)? Even the way you save money or build a nest eggcan be revealed by the moon’s position in your chart.
Because the moon changes so rapidly, it’s important to know your exact time of birth in order to know your moon sign. Do your chart for free here.
Every moon sign has its own light side—the obvious feelings that we are comfortable with expressing.
Because the moon spins on its axis at the same speed that it orbits planet Earth, we can only glimpse half of her from our vantage point down here. There really is a dark side of the moon, and it’s not just the trippy name of a Pink Floyd album. This metaphor translates to the moon’s role in the chart. Every moon sign has its own light side — the obvious feelings that we are comfortable with expressing. And, then, there’s a dark side: the emotions that creep up and catch up by surprise ones we may even try to reject within ourselves.
Understanding your moon sign can bring a deep sense of self-knowledge, but may also be a lifelong quest for understanding. Psychologist Carl Jung’s concept of the shadow definitely corresponds with this. To “know thyself” is truly a never-ending journey. Discovering the hidden facets of your moon sign is part of that path.
In Shamanic astrology, the moon even reveals your past life tribe — what core strength you bring into this lifetime. These may be traits that you’ve mastered and can use resourcefully, but should be mindful of not clinging to them as security blankets.
Knowing your moon sign is key to navigating your deepest desires and emotions. While you can’t change the moon sign you were born under, you can adjust the dials to help strengthen the positive traits. Here is a helpful guide:
Planetary Stats: The Moon
- Changes Zodiac Signs: Every 2-3 days
- Zodiac Sign It Rules: Cancer
- Day of the Week: Monday
The Moon governs:
- Emotions
- Receptivity
- Intuition
- Security
- Home
- The mother
Special positions of the Moon:
Domicile: Cancer
The planet’s home base, an easy flow if placed here in the chart.
Detriment: Capricorn
Opposite sign of home base, may need to work harder to integrate the planet’s energy if placed here in the chart.
Exalted: Taurus
The planet’s most powerful position, indicates ease and added fortune with using the planet’s energy if placed here in the chart.
Fall: Scorpio
Opposite sign to the exalted position, can indicate struggles with utilizing the planet’s energy if placed here in the chart.
How do I put this all together and start interpreting birth charts?
Learning about the planets in relation to the zodiac is a critical step in beginning your journey into the stars. The planets with short orbits move across the zodiac frequently and are specific to an individual's date and time of birth. Referred to as the inner planets, they include the sun, moon, Mercury, Venus, and Mars, and they directly impact our unique personalities and day-to-day experiences.
The planets on the other side of the asteroid belt are referred to as the outer planets. These celestial bodies — Jupiter, Saturn, Uranus, Neptune, and Pluto — move much more slowly, changing signs every one to thirty years. The outer planets define larger life themes, as well as experiences shared by generations.
The significance of the outer planets in a birth chart is determined by the houses they occupy. A birth chart is divided into twelve sections referred to as houses. Each house represents an area of life: Houses one through six address everyday activities and mundane matters such as personal finances, the home, and routines houses seven through 12 relate to more abstract concepts, including philosophy, legacy, and psychic abilities. The placement of the planets in the houses reveals where we store our energy, as well as our strengths and weaknesses.
Examine your own chart, and consider the planets and their corresponding signs and houses. How is a planet's function influenced by its zodiac sign, and which area of life does it impact most directly? From here, your unique interpretation of a birth chart should follow this formula: Planet + Sign + House = Interpretation
For instance, if your natal moon is in sensitive Cancer in the seventh house, the house that represents committed partnerships, your emotional happiness may be very connected to your relationships. If your natal Mars is in pragmatic Virgo in the eleventh house, the house related to humanitarianism, you may be motivated to help others in very practical ways.
The unique placement of the planets in the houses is determined by your rising sign, also known as your ascendant. This is the zodiac sign that was on the eastern horizon at the exact moment of your birth. Your rising sign creates the entire architecture of your birth chart and defines your planetary chart ruler, the planet associated with your chart (to calculate yours, identify your rising sign and then which planet governs that zodiac sign). This rising sign also defines our external experience: If your sun sign writes the speech, your rising sign is how the speech is delivered. As astrologers describe it, it's the "mask worn in public." It reveals how you're perceived by others and how you interface with the world.
Whether your goal is to become a professional astrologer or simply make sense of your birth chart, understanding the planets, signs, and houses can expose the complex depths of astrological wisdom. Spend lots of time with your birth chart: Your ability to interpret the placements in it will be strengthened as you apply the chart to your everyday life. Don't be afraid to create narratives and make bold observations. After all, that is how the solar system was discovered.
At the core of astrology, cosmic warrior, is the enduring belief that the human spirit mirrors the universe: Both are beautifully diverse and infinitely mysterious. And ultimately, astrology is the art of stargazing. Your curiosities will always illuminate the darkness.
Read more stories on astrology and the occult:
I have the scoop on which sign your sign should date right here: