Sterrekunde

Waargeneem data oor maanafstand?

Waargeneem data oor maanafstand?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

nY AD yL Uy HZ oE UV GH Te sY jo KG Qi

Waar kan ek gratis / oop data vind vir die waargenome (nie berekende / teoretiese) afstand tussen die aarde en die maan?

Ek wil die waargenome afstand van die Maan uur vir uur sien.


Hier is data wat wissel met laser: http://www.geoazur.fr/astrogeo/?href=observations/donnees/lune/brutes

Hier kan u data soek vir 'n arbitrêre tydperk.

Die data is wat hulle "MINI" -formaat noem, wat moeilik is om te lees, dit is basies 'n lang reeks getalle.

Hier is 'n voorbeeldlyn:

5120160113152419452625024340653926601301910034002705017 087323 + 04325 5320a0702

Gelukkig is daar 'n spesifikasie vir hierdie formaat hier: http://www.geoazur.fr/astrogeo/observations/donnees/lune/mini-format.html

Volgens die spesifikasie is die vlugtyd vir die laser charters 24-37 vanaf elke lyn, gemeet in .1 pikosekondes. Dus vir die bostaande lyn is die laser se retourvlugtyd 24340653926601 (.1 ps).

Die gegewens bevat nie die afstand nie, dus om die afstand vanaf die vlugtyd te bereken, doen ek die volgende:

Verdeel 24340653926601/2 om eenrigtingvlugtyd in .1 ps te kry.

Vermenigvuldig die resultaat 1.2170327e + 13 * .1 om ps te kry.

Vermenigvuldig die resultaat 1.2170327e + 12 * 1.0e-12 om sekondes te kry.

Vermenigvuldig die resultaat 1.2170327 * 299792458 (die snelheid van die lig) om die afstand in meter te kry: 364857224.599


Hier is 'n rowwe ondersoek hierna, aangebied as 'n aanvullende antwoord. Met behulp van die Python-pakket Skyfield kan u die afstand na die middelpunt van die Maan bereken. Op die oomblik weet ek nie hoe om die afstand na die spesifieke plek van die Apollo 15-weerkaatsers op die maan te bereken nie, maar die afstand van die sterrewag na die naaste punt op die maan is ongeveer 200 km korter as die afstand wat vanaf laserpulse bepaal word, soos beskryf in die ander antwoord. Dit lyk asof dit reg is, aangesien die radius van die maan ongeveer 1767 km is.

Uitset:

hoogte: 37.6454136245 azimut: 193.116013331 afstand (tot middel van die maan): 366418.551453 afstand tot die naaste punt op die maan: 364652.0 vergelyk met: 364857

Python-skrif

invoer numpy as np invoer matplotlib.pyplot as plt vanaf skyfield.api invoer Loader, Topos load = Loader ('~ / Documents / fishing / SkyData') data = load ('de421.bsp') ts = load.timescale () planete = load ('de421.bsp') aarde = planete ['aarde'] maan = planete ['maan'] Grasse = aarde + Topos ('43 .753698 N ',' 6.922998 E ', hoogte_m = 372.) tyd = ts. utc (2016, 1, 13, 15, 24, 19.4526250) alt, az, dist = Grasse.at (tyd) .observe (maan) .apparent (). altaz () druk "altitude:", alt.degrees print " azimut: ", az.degrees druk" afstand (tot middel van maan): ", dist.km druk" afstand tot naaste punt op maan: ", rond (dist.km, 0) - 1767. druk" vergelyk met: " , 364857 "" "5 Formaat 1 Kleur 20160113 AAAAMMJJ 1524194526250 HHMMSSsssssss 24340653926601 2sssssssssssss tye 0.1 ps 3 Weerkaatserkode (3 = Apollo 15) 01910 Stasiekode (01910 = Grasse) 034 Aantal eggo's 002705 ps Onsekerheid 0 (0,1 ps) "" "

onder: Maanlandingsplekke, van Bob die vreemdeling!


Die metings is afstand van een spesifieke plek op die aarde, tot een spesifieke plek op die maan. Maar hierdie plekke beweeg relatief tot die middelpunt van die Aarde of die maan ... die Aardeoppervlak "buig" as gevolg van verskillende getyekragte van die Maan, die son en ander planete, en so ook die maan in 'n mindere mate. Daarbenewens wentel die maan nie die aarde in 'n mooi perfekte sirkel nie. Dan moet u in ag neem dat die snelheid van die lig deur die atmosfeer nie konstant is nie (wissel met die weer). Die meetinstrumente het ook baie geraas en ruis (dit vergelyk baie met die akkuraatheid en akkuraatheid van die metings).


Waargeneem data oor maanafstand? - Sterrekunde

1. Phobos, die maan van Mars, wentel om Mars op 'n gemiddelde afstand van 9378 kilometer, wat een omwenteling in net 7 uur en 59 minute maak. Die massa van Phobos is so klein in vergelyking met die massa van Mars dat ons dit mag verwaarloos. Gebruik Newton se weergawe van Kepler se derde wet om die massa van die planeet Mars in gram te bereken.

Deel 1: Data

Halfhoofas van die baan van Phobos A 9378 km
Omlooptydperk van Fobos P 9uur, 59 min
Massa van Phobos M Phob in wese 0
Massa van Mars M Mars ?

Deel 2: Vergelyking

Deel 3: Omskakeling van eenhede

A = 9378 km X (1 AU / 1,5 X 10 8 km) = 6,25 X 10 -5 AU

Ons moet die tydperk omskakel in jare:

P = 7 uur, 59 minute = 7,983 uur X (1 dag / 24 uur) = 0,3326 dae X (1 jaar / 365,25 dae) = 9,11 X 10-4 jaar

Deel 4: Berekening

M Mars + 0 = (6,25 X 10 -5) 3 / (9,11 X 10 -4) 2

M Mars = 2,44 X 10-13 / 8,29 X 10-7 = 2,94 X 10-7 sonmassas

Om nou van sonmassas na gram om te skakel, vermenigvuldig ons net met die aantal gram in 'n sonmassa:

M Mars = 2,94 X 10-7 sonmassas X (1,989 X 10 33 gram / sonmassa) = 5,85 X 10 26 gram

Deel 5: Die antwoord

2. As die impak van voorwerpe uit die ruimte teen 'n gelyke tempo gedurende die hele maangeskiedenis plaasgevind het, en die maria slegs 'n vierde soveel kraters (per vierkante kilometer) het as die res van die maan, hoeveel jonger as die oppervlak van die maan sou die maria wees? Stem dit ooreen met wat volgens ons die werklike ouderdomme van die maria vergelyk word met die ouderdom van die maan? Wat beteken dit oor die tempo van impak op die geskiedenis van die Maan?

Die maria het gewoonlik 'n kwart van die kraters wat die hooglande het. Dit is vanselfsprekend dat dit impliseer dat die maria met 'n kwart soveel kraters as die hooglande getref is. As ons nou aanneem dat die tempo van meteoor-impak op die maan se hele oppervlak gedurende die eeue konstant was, beteken dit weer dat die maria 'n vierde so oud soos die hooglande is. Dit wil sê, as die hooglande 4 miljard jaar oud is, is die maria 'net' een miljard.

As die kratersnelheid NIE konstant was nie, word dit moeiliker om te raai dat die maria alleen hiervan verouder. Die datering van maangesteentes dui daarop dat die maria nie veel ouer is as die hooglande nie, maar die maria is almal 3 miljard jaar oud. Dit beteken dat die kratersnelheid inderdaad NIE konstant was nie, dat daar gedurende die eerste anderhalf jaar of so baie, baie impak was (wat die hooglande gekenmerk het), en dan het die koers afgeneem. Enige impak wat gedurende die eerste miljard en 'n half jaar in die laaglande voorgekom het, is uitgewis deur die vorming van die maria, en die paar kraters wat ons sien, kom uit die latere, kalmer tydperk.

3. Onthou dat wat ons 'gewig' noem, bloot die swaartekrag tussen 'n persoon en die planeet is waarop hy / sy / hy staan. Gebruik hierdie feit om die gewig van 'n persoon op aarde met die gewig van 'n persoon op die maan te vergelyk. As ek 240 pond op die aarde weeg, hoeveel sou ek op die maan weeg?


Teoretiese hulpmiddels

Die LLR-span van die LUNAR-groep het aandag gegee aan die ontwerp, vervaardiging en plasing van die volgende generasie retroreflektors vir die maan.

  • Dit kan die akkuraatheid, en dus die wetenskap, met 'n faktor van meer as 100 verbeter.
  • Baie verskillende retroreflektorontwerpe is ontwikkel en hul prestasie in die maanomgewing word in verskillende rekenaarprogramme gesimuleer. Die beste ontwerp is in hardeware geïmplementeer en in termiese vakuumkamers getoets om hul prestasie in die harde omgewing op die maanoppervlak te evalueer.
  • Daarbenewens is die metode van ontplooiing op die maanoppervlak van kritieke belang om die akkuraatheid te handhaaf. Verskeie ontplooiingsmetodes is opgestel en sommige daarvan is in die laboratorium getoets en onlangs in NASA veldtoetse georganiseer in gebiede op aarde wat soortgelyk is aan die maangrond (Mauna Kea vulkaan in Hawaii).
  • Die grondstasievereistes word deur LLR vanaf die LRO-satelliet ondersoek.
  • Ons is ook besig om die akkuraatheid van die sagtewareprogramme vir die ontleding van die data te ondersoek en werk daaraan om swakheidsareas te verbeter.

'N Totale maansverduistering op 21 Desember 2010 het die geleentheid gebied om idees oor die waargenome tekort aan LLR-sein by volmaan te toets. In marginale waarnemingstoestande kon die APOLLO-projek (Apache Point Observatory Lunar Laser-range Operation) bevestig dat die verwydering van sonlig tot baie beter seinprestasie gelei het as wat APOLLO voorheen by volle maan gesien het. Dit blyk ook dat die sein vroeg in die verduistering verbeter, dan erger word en weer kort weer sterk word as die lig terugkom. Dit stem ooreen met die verwagtinge as die sonabsorpsie aan die voorkant van die hoekkubus 'n termiese gradiënt tot stand bring wat die seinafbraak veroorsaak. As die sonlig verwyder word, verdwyn die gradiënt tydelik en verander dan van teken terwyl die hoekkubus-prisma afkoel deur na die ruimte te straal. As die lig terugkom, swaai die gradiënt weer deur nul terwyl dit 'n warmer vooroppervlak hervestig. Hierdie nuwe inligting sal help om die modelle van wat die tekort veroorsaak te beperk, en sal bydra tot die volgende generasie reflektorontwerpe wat 'n soortgelyke lot wil vermy.

Figuur 1: Beeld saamgestel deur 'n ameteur-sterrekundige van 'n totale maansverduistering. Hierdie een het in 2003 plaasgevind.

Baie moeite is gedurende die eerste jaar van LUNAR bestee aan die verfyning van die wetenskaplike geval vir nuwe LLR-vermoëns. Die moontlikheid om gemodifiseerde algemene relatiwiteit met behulp van LLR te toets, is ondersoek. In samehang met die toets van GR is die laserskoonkamer by die 1,2 m-teleskoopopsporingsfasiliteit by die Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt Maryland omskep om die vaslegging en analise van kubushoek Far Field Diffraction Patterns (FFDP) te ondersteun. Hierdie laboratorium met afstandtoegang tot die teleskoop Coude & rsquo-kamer het oorspronklik kortpulslasers met hoë krag vir SLR-bedrywighede (Satellite Laser Ranging) gehuisves.

Die eens verlore Russiese maanrover Lunokhod 1 is gevind danksy die LROC-kamera aan boord van die Lunar Reconnaissance Orbiter (LRO). Hierdie rover is geïnstalleer met retro-weerkaatsers wat verskil van dié wat deur Apollo-ruimtevaarders ontplooi is. Lees hierdie artikel oor hoe die toevoeging van 'n ander maanlaserreflektor help om ons teorieë oor die struktuur van die maanbinne te beperk. Na die ontdekking daarvan in Maart 2010, word Murphy en kollegas die volgende maand gewissel. Die koördinate - voorheen onbekend op die vlak van 5 km - is nou binne 'n paar cm vasgepen.

Verrassend genoeg presteer die Lunokhod 1-reflektor ongeveer vier keer sterker as sy tweeling op Lunokhod 2. Dit bied 'n interessante rimpel in die verhaal van die agteruitgang van die weerkaatsers, soos gerapporteer in die eerste jaarverslag vir LUNAR. Lunokhod 2 was eens sterk in vergelyking met Apollo 15, maar is nou tien keer swakker as Apollo 15. Lunokhod 1 is daarenteen net 'n faktor van twee swakker as Apollo 15. Aangesien die twee Lunokhod-weerkaatsers dieselfde ontwerp het, is ons gekonfronteer met die raaisel waarom Lunokhod 2 baie vinniger agteruitgegaan het as wat Lunokhod 1 het (intussen het die Apollo 15-reeks ook aansienlik afgebreek). Die ligging van Lunokhod 1 op die maan --- die naaste weerkaatser aan die skynbare ledemaat - maak dit die sensitiefste sonde van maanoriëntasie. Deur vyf beskikbare weerkaatsers op die maan te hê, versterk ons ​​die vermoë om getyvervorming van die maanfiguur te karteer. Om Lunokhod 1 te vind, is ook 'n handige proefgeval om 'n nuwe weerkaatser op die maan te "installeer" en die ontleding van pogings om die nuwe data te gebruik, aan te pas.

Figuur 2: 'n Beeld wat deur die Sowjetunie van die Lunakhod 1-rover vrygestel is voordat dit in 1970 in gebruik geneem is. Lunakhod beteken 'Moon-walker' in Russies.

Die parallaks netwerk

Ons het 'n netwerk van skole, sterrewagte en opvoeders regoor die wêreld opgestel om hierdie meting te doen. Dit bestaan ​​uit die volgende lede:

  • Mario Koch, onderwyser aan die Friedrich-Schiller-Gimnasium in Weimar, Duitsland
  • Noorali Jiwaji, fisikadosent aan die Open Universiteit van Tanzanië in Dar es Salaam, Tanzanië
  • Frank Oßwald, onderwyser aan die Goethegymnasium in Weissenfels, Duitsland
  • Matthias Penselin, onderwyser aan Albert Schweitzer Gimnasium Crailsheim en aan die Huis van Sterrekunde in Heidelberg, Duitsland
  • Alexander GM Pietrow, Iosto Fodde en Jelle Mes, studente van Leiden Observatory en lede van die waarnemingskomitee van die Leidsch Astronomisch Dispuut 'F. Kaiser ', Leiden, Nederland
  • Elena Servida, onderwyseres aan Liceo Vittorio Veneto in Milaan, Italië
  • Brian Sheen, Roseland Observatory, St Austell, Verenigde Koninkryk

Met hierdie netwerk, of hul eie, kan onderwysers datums voorstel om maanwaarnemings uit te voer om die afstand van die aarde na die maan uit te werk.

Die lang afstande tussen die skole in ons netwerk bied 'n voldoende lang basislyn (afstand AB) om dit moontlik te maak om die aarde se afstand vanaf Mars in Mei 2016 te meet (Cenadelli et al, 2009 Penselin et al, 2014). Op daardie tydstip sal die Aarde tussen die Son en Mars geleë wees, en Mars byna op sy naaste moontlike afstand van die Aarde, 'n ideale posisie vir sulke waarnemings.

As u met enige deel van hierdie internasionale netwerk wil skakel om metings uit te voer, kontak Davide Cenadelli by [email protected]


Sterrekunde

Papierdoelstelling
Die vraestel bevat (51-97) vrae en antwoorde rakende die ontleding van die sonnestelselbeweging - Die vrae is:
50- (herhaal) Hoe word die planetdata geskep?
51- Is daar relativistiese effekte in die bewegings van die sonnestelsel?
52- Kan 1 sekonde van Mercury Motion = 9,18 sekondes Pluto Motion wees?
53- Waarom omtrek van Jupiter-orbitale = die binneplanete se omtrek-totaal is totaal?
54- Kan Uranus-bewegingseffek op die as-kanteling van Venus hê
55- Waarom hang Jupiter Motion Data af van die koers 1.16
56- Waarom word die aarde se maan jaarliks ​​19 grade
57- Waarom Aardomtrek = die 5 binneste planete-diameters?
58- Waarom sou Bode Law Neptunus-baanafstand nie kon voorspel nie?
59- Kan Uranus 'n invloed hê op die aarde se maanbeweging?
60- Waarom skep die maan 'n hoek tussen sy verplasingsrigting en sy wentelbaan?
61- Waarom is die Pluto-dagperiode in verhouding met die aardmaandag?
62- Is daar 'n parallelle heelal?
63- Wat is die oorsprong van leemtes in maanbasalt?
64- wat is die heelal
65- kan hewige storms deur die maan in perigeum veroorsaak word
66-Wat is die rol van Maan op aarde-stabilisering en seismiese aktiwiteite?
67-Wat hou Phobos en Deimos in hul maanbane rondom Mars?
68-Magnetisme Swaartekrag in die heelal?
69- Is ons alleen in die heelal?
70- Tyd as 'n golf.
71-Wat is die interessantste inligting wat regtig verkry kan word met vlugte na Mars?
72-Kan gravitasievelde sommige ruimtevoorwerpe onsigbaar maak vir ons waarnemings?
73- Hoe kan die krag van sonstelsels op praktiese maniere vergroot word?
74-Beweeg die rigting van die Pluto in teenstelling met die rigting van sy baan om die son?
75- Dit is 'n vraag oor die effek van 'n verduistering op swaartekrag en die Allais-effek soos ek Gravitons bestudeer?
76-Watter effek het die vorming van die aarde se maan op die evolusie van lewe gehad?
77-Is ons alleen in die heelal?
78- Planetêre rotasie - waarom draai planete progressief, behalwe enkele uitsonderings?
79-Waarom is daar, ondanks baie jare se luister na radiogolwe vanuit die ruimte, geen ander beskawings van intelligente wesens in die ruimte ontdek nie?
80-Newtonse Orbitale snelheid weerstaan ​​gesonde verstand
81-Hoe kan ek sterrekunde op die middelbare skool onderrig?
82-Waarom die maanapogee-omtrek = Aardbewegingsafstand per sondag?
83-Kan ligbewegingsfunksies in 'n planeetbeweging ontdek word?
84- Waarom versnel en vertraag die planete terwyl hulle om die son wentel?
85-Is kosmologie 'n wetenskap?
86- Waarom die aarde se maanafstand by totale sonsverduistering = Saturnusomvang?
87- Verduidelik die meetkundige vorm van die maanbaan in besonderhede?
88- (1 uur Pluto-beweging = 4,6 uur van die aarde se maanbeweging). Is hierdie stelling korrek, so ja, waarom?
89- Waarom Saturnusnelheid = 9,7 km / s?
90- Kan die bewegingsdata-ontleding van Mercurius, Jupiter en Pluto bewys dat 'n ligstraal met 'n snelheid van 1,16 mkm per sekonde in die heelal gevind word?
91- Kan die ligstraalbeweging die sonplaneetbeweging vergesel?
92- Waarom Jupiter-deursnee = 142984 km?
93- Gebruik die bewegings van die planete die afstandswaardes as tydperke ?!
94- Kan die songroep as 'n masjien van ratte werk?
95- Is daar 'n proporsionaliteit tussen materiaaldimensies en ruimte (dimensies)?
96- Is daar een vergelyking wat alle sonplanete se data beheer?
97- Is Uranus-aksiale kanteling loodreg op die Aksiaanse kanteling van die Aarde? Kan hierdie loodregtheid die aarde se maanbeweging beïnvloed?

Gerges Francis Tawdrous +201022532292

--raison d & # 39etre कर्त्तुं धर्मव्यवस्थानमसुराणांप्रणाशनम् - मत्स्यपुराणम्, asura & # 39evil & # 39 vernietig en dharma herstel
- As सारथिः sārathiḥ & # 39charioteer & # 39, word Śrī Kr̥ṣṇa spesifiek na verwys as पार्थः pārthaḥ [पृथायाः अपत्यम् अण्] 1 'n Metronimiek van alle Pāṇḍavas सर्वेषामेव पार्थानां फलफफफफ .1.25 en verskeie ander plekke. -2 'n Koning. -Komp. -सारथिः 'n bynaam van Kr̥ṣṇa (Apte).
Daśāvatārā दशावतार in Jyotiṣa-tradisie word in Br̥hat Parāsara Hora Śāstra uiteengesit:
Van die Son God die inkarnasie van Rama, van die maan die van Kr̥ṣṇa, van Mars die van Narasimha, van Mercurius die van Boeddha, van Jupiter die van Vāmana, van Venus die van Paraśurāma, van Saturnus die van Kūrma (Tortoise), van Rāhu die van Varāha [Boar] en van Ketu die van [Matsya] (vis) het voorgekom. Alle ander inkarnasies dat dit deur die Grahas is. Die wesens met meer Paramātmamśa [d.w.s. Rāma, Kr̥ṣṇa, Narasimha en Varāha] word goddelike wesens genoem & # 39.— Br̥hat Parāsara Hora Śāstra, Vertaal deur R. Santhanam (1984), Hoofstuk 2, Verse 5-7 (Santhanam, R. Brihat Parasara Hora Sastra Met Engelse vertaling ( Deel 1 bl. 23)
Jyotiṣavedāṅga van Lagadha is die pancanga in die mode in Mahābhārata kṣetra.
Māgha Paurṇamāsa-dag is die begindatum van Kaliyuga bevestig deur Jyotiṣavedāedga (van Lagadha)
https://tinyurl.com/4uwevf5k
Wanneer son en maan dieselfde streek van die diereriem saam met die sterretjie Dhanishta beset, begin die Yuga, die maand Magha, die maand genaamd Tapas, die helder nag en hul noordelike loop. (R-VJ 5 Y-VJ6) [Opmerking: Yajus-resensie, nie-Yajus-verse van Rk-resensie, geredigeer: G. Thibaut, & quot Bydraes tot die verklaring van die Jyotisha-Vedánga & quot, Journal of the Asiatic Society Bengal Vol 46 (1877) , bl. 411-437 Yajus-resensie, Rk-variante en kommentaar van Somākara Śeṣanāga, geredigeer: Albrecht Weber, Über den Vedakalender Namens Jyotisham, Berlyn 1862].

Van die Daśāvatārā दशावतार, vier inkarnasies van Paramātmamśa [d.w.s. Rāma, Kr̥ṣṇa, Narasimha en Varāha] is vir die spesifieke missie om asura & # 39evil & # 39 te vernietig en dharma te herstel.
Śrī Kr̥ṣṇa avatāra is presies gedateer in die tradisie van kiśora Śrī Kr̥ṣṇa en die moord op Kamsa - die bestaansrede van Kr̥ṣṇa avatāra. Datum is 18 Feb.3102 VHJ net soos Narasimha avatāra is om Hiraṇyakaśipu te vermoor Varāha avatāra is om Hiraṇyākṣa dood te maak. Al die avatara is om dharma te herstel, om bose heersers te verwyder.
Hierdie datum van 18 Februarie 3102 is afgelei van die datum waarop Kamsa vermoor is.
गोलोकं गच्छ शीघ्रं त्वं सार्धं गोकुलवासिभिः।
आरात्कलेरागमनं कर्ममूलनिकृन्तनम् ।। ११ ।। (ब्रह्मवैवर्तपुराणम् / खण्डः ४ (श्रीकृष्णजन्मखण्डः). Die aanpak van Kali, vernietiger van kieme van goeie dade, is naby of naby.
आगमनं āgamanam (van Kali) PLUS आरात् ārāt & # 39 onmiddellik & # 39.
Hierdie श्रीकृष्णजन्मखण्डः ब्रह्मवैवर्तपुराणम् verwysing is nadruklik Jyotiṣa pramāṇa. Dit hou verband met liferī Kr̥ṣṇa se lewe as 11-jarige jeugdige kiśora in Goloka, die konteks is die vroeë lewe van Krishna. Sy geboorte is om 23.40 Vrydag 27 Julie 3112 v.G.J.
Dus, 18 Februarie 3102 v.G.J. is die datum van die begin van Kaliyuga wanneer Śrī Kr̥ṣṇa Kamsa doodmaak. Die datum word bevestig deur Jyotiṣa siddhantin met verwysing na die lugdiagram wat 'n buitengewone samestelling van planete toon wat ditihāsa ontvou, dharma herstel. Śrī Kr̥ṣṇa avatāra eindig op 13 Februarie 3031 v.G.J. ('n dag na die burgeroorlog in Yadava). Śrī Kr̥ṣṇa is 'n aktiewe deelnemer tydens Kaliyuga aan gebeure wat verband hou met die Mahābhārata-oorlog wat presies in die Great Epic gedokumenteer is.
Madhvācārya & # 39s महाभारततात्पर्यनिर्णयः Mahāhāratatātparya nirṇaya - hoofstuk 32 - shloka 10.
समारब्धं कलियुगं यदा दुर्योधनोऽपतत्।
षट्त्रिं शाब्दं पुनः कृष्णः कृतमेवान्ववर्तयत्। ३२.१०।
Toe Duryodhana val, het Kaliyuga begin. Sri Krishna het verseker dat Kruta Yuga vir ses en dertig jaar die oorhand kry.
https://tinyurl.com/2tcck76n
Hanuman vertel Bhima Sena in Vanaparva 3.148.37 dat Kaliyuga reeds aangekom het एतत्कलियुगं नाम अचिराद्यत्प्रवर्तते युगानुवर्तनं त्वेतत्कुर्वन्ति चिरजीविनः
Mahābhārata is die mees akkuraat gedateerde teks wat die verhaal van die beskawing van Bhāratam Janam vertel. Adharma in Kaliyuga is die bestaansgrond vir Śrī Kr̥ṣṇa & # 39s avatāra. Prāptaṃ kaliyugaṃ viddhi, sê Sri Kr̥ṣṇa MB 9.59.21 Śalyaparva: & # 39Kaliyuga het deurboor, aangekom & # 39.
20 [vā]
aroṣaṇo hi dharmātmā satataṃ dharmavatsalaḥ
bhavān prakhyāyate loke tasmāt saṃśāmya mā krudhaḥ
21 prāptaṃ kaliyugaṃ viddhi pratijñāṃ pāṇḍavasya ca
ānṛṇyaṃ yātu vairasya pratijñāyāś ca pāṇḍavaḥ
https://www.sacred-texts.com/hin/mbs/mbs09059.htm
Dit is wat Śrī Kr̥ṣṇa vir Balarāma vertel tydens die Gadāyuddham tussen Bhimasena en Duryodhana, om te verduidelik hoe Bhimasena Duryodhana op die bobeen geslaan het. Die datum is November 3067 VHJ, sien 'n skema op die begindatum van die oorlog.

Anantaśayana Viṣṇu met Lakṣmi, sy tien avatāra bokant hom (geannoteer), 6de - 8ste eeu Badami, Karnataka
Opmerking: Paraśurāma is जामदग्न्यः
दशावतारः, पुं, (दश अवतारा यस्य।) विष्णुः ।इति त्रिकाण्डशेषः॥ तस्य दशावतारा यथा, - मत्स्यः १र्म्मः २ वराहः ३ नृसिंहः ४ वामनः ५ जामदग्न्यः ६ रा अपि च. "धर्म्मान्नारायणस्यांशः संभूतश्चाक्षुषेन्तरे .यज्ञञ्च वर्त्तयामासुर्देवा वैवस्वतेन्तरे .प्रादुर्भावे ततस्तस्य ब्रह्मा ह्यासीत् पुरोहितः .युगाख्यायाञ्च तुर्य्यान्तु आपन्नेषु सुरेषु वै .संभूतः स समुद्रान्ते हिरण्यकशिपोर्वधे .द्वितीये नरसिंहाख्ये रुद्रो ह्यासीत् पुरोहितः .बलिसंस्थेषु लोकेषु त्रेतायां सप्तमं प्रति .तृतीये वामनस्यार्थे घर्म्मेण तु पुरोधसा .एतास्तिस्रः स्मृतास्तस्य दिव्याः संभूतयो द्विजाः .मानुष्याः सप्त येन्ये तु शापजास्तान्निबोधत .त्रेतायुगे तु प्रथमे दत्तात्रेयो बभूव ह .नष्टे धर्म्मे चतुर्थांशे मार्कण्डेयपुरःसरः .पञ्चमः पञ्चदश्यान्तु त्रेतायां सम्बभूव ह .मान्धाता चक्रवर्त्ती तु तस्यौतथ्यः पुरःसरः .एकोनविंश्यां त्रेतायां सर्व्वक्षत्त्रान्तकृद्विभुः .जामदग्न्यस्तथा षष्ठो विश्वामित्रपुरःसरः .चतुर्व्विंशे युगे रामो वशिष्ठेन पुरोधसा .सप्तमो रावणस्यार्थे जज्ञे दशरथात्मजः ॥अष्टमे द्बापरे विष्णुरष्टाविंशे पराशरात् ।वेदव्यासस्तथा जज्ञे जातूकर्णपुरःसरः ॥कर्त्तुं धर्म्मव्यवस्थानमसुराणां प्रणाशनम् ।बुद्धो नवमके मिन्नेव युगे क्षीणे सन्ध्याशिष्टे भविष्यति ॥कल्की विष्णुयशा नाम पाराशर्य्यपुरःसरः ।दशमो भाव्यसंभूतो याज्ञवल्क्यपुरसरः॥ ”इति मत्स्यपुराणम् ॥-- शब्दकल्
दशावतार पु ० दश अवतारा अस्य। विष्णौ दश अवताराश्चअवतारशब्दे दृश्या अन्येऽपि दशावताराः मत्स्यपु ० उक्तायथा “धर्मान्नारायणस्यांशः संमूतश्चाक्षुषेऽन्तरे। यज्ञञ्चवर्त्तयामासुर्देवा वैवस्वतेऽन्तरे। प्रादुर्भावे ततस्तस्य ब्रह्माह्यासीत् पुरोहितः। युगाख्यायाञ्चतुर्थ्यान्तु आपन्नेषुसुरेषु वै। संभूतः स समुद्रान्ते हिरण्यकशिपोर्बधे ।द्वितीये नरसिंहाख्ये रुद्रो ह्यासीत् पुरोहितः ।वलिसंस्थेषु लोकेषु त्रेतायां सप्तमं प्रति। तृतीये वामनस्यार्थेधर्मेण तु पुरोधसा। एतास्तिस्रः स्मृतास्तस्य दिव्याःसंभूतयो द्विजाः। मानुष्याः सप्त येऽन्ये तु शापजा-स्तान्निबोधत। त्रेतायुगे तु प्रथमे दत्तात्रेयो बभूव ह ।नष्टे धर्मे चतुर्थांशे मार्कण्डेयपुरःसरः। पञ्चमःपञ्चदश्यान्तु त्रेतायां सम्बभूव ह। मान्धाता चक्रवर्त्तीतु तस्यौतथ्यपुरःसरः। एकोनविंश्यां त्रेतायांसर्वक्षत्रान्तकृद्विभुः। जामदग्न्यस्तथा षष्ठो विश्वामित्रपुरःसरः। चतुर्विंशे युगे रामो वशिष्ठेन पुरोधसा ।सप्तमो रावणस्यार्थे जज्ञे दशरथात्मजः। अष्टमे द्वापरेविष्णुरष्टाविंशे पराशरात्। वेदव्यासस्तथा जज्ञेजातूकर्णपुरःसरः। कर्त्तुं धर्मव्यवस्थानमसुराणांप्रणाशनम्। तिष्ये नवमके जज्ञे तपसा पुष्करेक्षणः देवक्यां वसुदेवेन द्वैपायनपुरःसरः। तस्मिन्नेव युगेक्षीणे सन्ध्याशिष्टे भविष्यति। कल्की विष्णुयशानाम पाराशर्य्यपुरःसरः। दशमो भाव्यसंभूतो याज्ञ-वल्क्यपुरःसरः। ”- वाचस्पत्यम्


Waargenome maanafstanddata? - Sterrekunde

Parsec --- 'n Parsec word gedefinieer as die afstand na 'n voorwerp met 'n (jaarlikse) parallaks van een boogsekonde. In terme van die kleinhoekformule is 1 parsek = 1 AU / 1 boogsekonde (uitgedruk in radiale). Onthou, 'n radiaal is 57,3 grade, dit is (57,3 x 60 x 60) boogsekondes, of 206 265 boogsekondes, dus 1 boogsekonde = 1/206 265 van 'n radius. Dan 1 parsek = 1 AU / (1/206 265), of 206 265 AU. Aangesien ons weet dat 1 AU = 1,5 x 10 ^ 8 km, dan 1 parsec = 3,09 x 10 ^ 13 km. Dit gebeur so dat dit gelyk is aan 3,26 ligjare, dus 'n parsec is nie 'n te verskillende lengte van 'n ligjaar nie, en ons is geneig om een ​​van die eenhede te gebruik as ons voortaan oor afstande praat. Let daarop dat dit 'n toeval: hierdie twee eenhede word op verskillende maniere gedefinieer. Ons skryf parsec as rekenaar.

Afstande met parsek --- Onthou dit as die afstand na 'n voorwerp verhogings sy parallaks neem af met ander woorde, parallaks is omgekeerd eweredig aan afstand. As die afstand in parsec gemeet word, word dit besonder eenvoudig: as 'n voorwerp 'n parallaks van 1 boogsekonde het, moet die afstand 1 st wees (per definisie) as dit 'n parallaks van 2 boogsekondes het, is dit twee keer as close, or at 0.5 pc if it is 2 pc away, it's parallax is 0.5 arc seconds. Met ander woorde,
distance in parsecs = 1/parallax in arc seconds .

A note on parallax --- The existence of stellar parallax is a very important link in the chain of reasoning that lets us find out distances throughout the universe, so that finding stars close enough to show annual parallax is an important enterprise. The HIPARCOS satellite recently measured many more such stars with parallaxes as small as 1 milli-arcsecond (one thousandth of an arc second). What would be the corresponding distance in parsecs?

Sizes and distances to the Moon and Sun (early measurements) --- You should treat this section mostly as illustrations of using the small angle formula to measure distances from angular sizes and real sizes of bodies. I will expect you to know that Aristarchus attempted these measurements, but I won't test you on the details of the methods. You should, however, try to follow the reasoning when it comes to solving the triangles involved.
Aristarchus (310-230 B.C.) used the timing of lunar eclipses to get a handle on the relative sizes of the Earth and Moon (see handout). The Moon travels through the Earth's shadow during a lunar eclipse in about 2.5 times the time it takes to move its own diameter. The size of the Earth's shadow at the position of the Moon is naturally related to the Earth's own diameter, being almost exactly 1 Moon diameter smaller than the Earth's diameter. So Earth's diameter is about (2.5 + 1) times the Moon's diameter, or, the Moon's diameter is 0.29 times the Earth's diameter (modern value is 0.27). Knowing the real size of the Moon and it's angular diamter (0.5 degrees) let's you work out the distance to the Moon, from the small angle formula: size = distance times 0.5 degrees in radians. He then used this distance to the Moon to try to find out the distance to the Sun (the Astronomical Unit). We saw his argument for finding the relative distances to the Sun and Moon by observing the Moon at first quarter and third quarter when the angle Earth-Moon_Sun is a right angle. He estimated the angle Moon-Earth-Sun by timing the Moon's orbit between quarters he got 87 degrees), and so could know the angle Earth-Sun_Moon he got 3 degrees). Then the small angle formula gives the Earth-Moon distance in terms of the Earth-Sun distance as
Earth-Moon = Earth-Sun times 3 degrees/57.3 degrees per radian. He got the scale about a factor of 20 too small since the Moon-Earth-Sun angle is really much closer to 90 degrees, so Earth-Sun-Moon is smaller than 3 degrees.

Hipparchus (160 - 127 B.C.) --- made many contributions, but the only one that was emphasised was the introduction of the system of Magnitudes to describe the relative brightnesses of objects in the sky. He divided the visible objects in the sky into "first magnitude", second magnitude" . down to "sixth magnitude", which were only just visible to the naked eye. Notice that smaller numbers mean brighter. Modern masurement has shown that this is a system that is related to the ratio of brightness of two objects: second magnitude compares to first magnitude the same way sixth magnitude compares to fifth, for example. In other words, a verskil in "magnitude" implies a verhouding in brightness. Modern definition below.

Magnitudes (modern) --- are the astronomical way of talking about the brightness or "luminosity" (will be defined later) of objects. The magnitude scale is logarithmic so that differences of magnitude represent ratios of brightness, defined so that a difference of 5 magnitudes corresponds to a brightness ratio of 100. The scale is also upside-down: smaller magnitudes mean brighter objects.


Observed lunar distance data? - Sterrekunde

LRO Revisits Apollo Landing Sites

This site was last updated 06/14/21

Copyright 2001-2019. http://www. astrotx .com. No material used within this website may be used, amended or distributed without the consent of the author unless specifically stated otherwise.

175-mm, 40-mm M79 Grenade Launcher, amateur astronomy, Andromeda galaxy, Annie's astro actions, Apollo Landing Sites, astro telescope, astro imaging, astronomical photography, astronomy, astronomy accessories, astronomy actions, astronomy club, Astronomy definitions, astronomy equipment, Astronomy facts, astronomy for beginners, Astronomy image of the month, astronomy images, astronomy picture, astronomy pictures, astrophotography, Autostar, AutoStar suite, backyard astronomy, Betelgeuse, Cassegrain telescope, CCD astronomy, CCD imaging, Comet ISON, DSI, DSI Pro II, Deep Space, deep space photography, dew shield Meade, digital astrophotography, digital camera, digital image processing, Dong Ha, Vietnam, Dong Ha Combat Base, eagle nebula, eye of god, FITS, flame nebula, galaxies, galaxy, Globular Cluster, Grenade Launcher, High Definition Earth Viewing, Hubble space telescope, image processing, image processing techniques, ISS, International Space Station, KIC 8462852, Kuiper Belt, lagoon nebula, LPI imager, Lunar Landing Sites, Lunar Phases, M107, M16, M16A1 Rifle, M79, Magnifying The Universe, Meade AutoStar, Meade AutoStar suite, Meade camera adapter, Meade DSI, Meade DSI camera, Meade DSI pro II, Meade ETX, Meade ETX 90, Meade, Meade LPI, Meade lx90, Meade lx90 telescope, Meade telescope, Meade telescopes, Mercury Transit, Messier, Messier catalog, Messier images, Messier pictures, Moon, Moon pictures, Nebula, new general catalog, NGC, NGC catalog, outer space, Photoshop Actions, planets, shuttle, shuttle launch, space, Star Clusters, space photos, space picture, space pictures, space planets, space shuttle, space shuttle launch, Star Sizes, stars, telescope, telescope camera, telescope cameras, telescope Meade, telescopes, telescopes cameras, telescopes Cassegrain, Texas Astronomical Society, the moon, universe, Total Solar Eclipse November 13, 2012, Venus Transit, Vietnam.


Top Astronomers

Here’s our alphabetical list of the most popular astronomers, or contributors to astronomy, astrophysics, or cosmology on the Famous Scientists website, ordered by surname.

Anaximander c. 610 BC – c 546 BC.
An ancient scientific revolution: the first person in history to recognize that our planet is free in space and does not need to sit on something. Aristarchus c. 310 BC – c. 230 BC.
Promoted the idea that the earth follows a circular orbit around the sun eighteen centuries before Nicolaus Copernicus resurrected the idea. Tycho Brahe 1546 – 1601.
Produced the best star catalog that had ever been compiled and measured the orbit of Mars with unprecedented accuracy, paving the way for Kepler’s laws of planetary motion and Newton’s law of gravity. Subrahmanyan Chandrasekhar 1910 – 1995.
Discovered that massive stars can collapse under their own gravity to reach infinite densities. Today we call these collapsed stars black holes. Nicolaus Copernicus 1473 to 1543.
Started the scientific revolution with his book The Revolutions of the Celestial Spheres, explaining his belief that the solar system is centered on the sun, not the earth. Democritus c. 460 — c. 370 BC
Devised an atomic theory featuring tiny particles always in motion interacting through collisions advocated a universe containing an infinity of diverse inhabited worlds governed by natural, mechanistic laws rather than gods deduced that the light of stars explains the Milky Way’s appearance discovered that a cone’s volume is one-third that of the cylinder with the same base and height. Frank Drake Born 1930.
A founder of the search for extraterrestrial intelligence devised the Drake equation to estimate the number of intelligent civilizations in our galaxy first person to map the center of the Milky Way galaxy. Eudoxus c. 400 — c. 347 BC.
Founded mathematical astronomy by creating the first mathematical model of the universe, turning physical reality into something more abstract offering a new vantage point from which we could study the universe. Galileo Galilei 1564 – 1642.
The father of modern science, Galileo discovered the first moons ever known to orbit another planet and that the Milky Way is made of stars. He rationalized how objects are affected by gravity, stated the principle of inertia, and proposed the first theory of relativity. Carl Friedrich Gauss 1777 – 1855.
The last master of all mathematics, Gauss revolutionized number theory he invented the method of least squares and the fast Fourier transform to recover the position of the lost dwarf planet Ceres. Thomas Harriot c. 1560 – 1621
The first person in history to map a heavenly body after observing it with a telescope – the moon. Probably first to observe sunspots with a telescope, allowing him to determine the sun’s rotation rate. Caroline Herschel 1750 – 1848
Discovered five comets produced an award-winning catalogue of nebulae the brother-sister team of William & Caroline Herschel increased the number of known nebulae from about 100 to 2,500. John Herschel 1792 – 1871
Produced the first global survey of the night skies, discovered hundreds of nebulae and thousands of double stars took the first ever photograph on glass plate invented the actinometer to measure the heating power of radiation. Hipparchus c. 190 BC – c. 120 BC.
One of antiquity’s greatest scientists: founded the mathematical discipline of trigonometry measured the earth-moon distance accurately discovered the precession of the equinoxes and documented the positions and magnitudes of over 850 stars. His combinatorics work was unequalled until 1870. Fred Hoyle 1915 – 2001.
Proved that most of the naturally occurring elements in the periodic table were made inside stars and distributed through space by supernova explosions coined the phrase ‘Big Bang’ while strenuously denying that there had ever been one argued for an expanding Steady State universe with no beginning or end. Edwin Hubble 1889 – 1953.
Discovered there are galaxies beyond our own. Showed we live in a universe of many galaxies, each an isolated ‘island universe,’ separated by immense distances. Independently discovered and popularized Hubble’s law, believed by most cosmologists to indicate we live in an expanding universe. Omar Khayyam 1048 – 1131.
A poet, philosopher and scientist, Khayyam calculated the length of a year to the most accurate value ever, and showed how the intersections of conic sections can be utilized to yield geometric solutions of cubic equations. Johannes Kepler 1571 to 1630.
Discovered the solar system’s planets follow elliptical paths identified that the tides are caused mainly by the moon proved how logarithms work discovered the inverse square law of light intensity his laws of planetary motion led Newton to his law of gravitation. Henrietta Leavitt 1868 – 1921.
Discovered that Cepheid variable stars act as a ‘standard candle,’ opening the door to measuring the distances to far-distant stars and the discovery of galaxies beyond the Milky Way. Percival Lowell 1855 – 1916.
‘Discovered’ an enormous network of canals and oases on Mars, from which he deduced the existence of an advanced Martian civilization his search for Planet X led to the discovery of Pluto. Georges Lemaître 1894 – 1966.
Discovered that space and the universe are expanding discovered Hubble’s law proposed the universe began with the explosion of a ‘primeval atom’ whose matter spread and evolved to form the galaxies and stars we observe today. John Michell 1724 – 1793.
The first person in history to suggest black holes could exist invented the torsion balance to weigh our planet used probability theory to establish that some star groupings are non-random and therefore perhaps held together by gravity. Isaac Newton 1643 to 1727.
Profoundly changed our understanding of nature with his law of universal gravitation and his laws of motion invented calculus, the field of mathematics that dominates the physical sciences generalized the binomial theorem built the first ever reflecting telescope showed sunlight is made of all the colors of the rainbow. Cecilia Payne-Gaposchkin 1900 – 1979.
Discovered that the most abundant chemical elements in stars and hence in the universe are hydrogen and helium. Claudius Ptolemy AD c. 100 – c. 170.
Author of the Almagest, which contained a catalogue of over a thousand stars with positions, relative brightnesses, and constellations and a mathematical model predicting the movements of the planets that was unsurpassed for almost 1,500 years. Gene Shoemaker 1928 to 1997.
The first astrogeologist and a founder of planetary impact science proved large craters on Earth were caused by collisions with asteroids and comets rather than volcanic activity proposed microscopic life could travel between planets on rocks blasted into space by asteroid impacts. Harold Urey 1893 – 1981.
Discovered deuterium showed how isotope ratios in rocks reveal past Earth climates founded modern planetary science the Miller-Urey experiment demonstrated that electrically sparking simple gases produces amino acids – the building blocks of life.

Neptune’s innermost moon Naiad: Lost and found!

Neptune’s tiny innermost moon, Naiad, has now been seen for the first time since the cameras on the Voyager 2 spacecraft discovered it in 1989. Dr. Mark Showalter, a senior research scientist at the SETI Institute in Mountain View, California, announced the result today (October 8, 2013) in Denver, Colorado, at the annual meeting of the Division for Planetary Sciences of the American Astronomical Society. He and collaborators also released a dramatic new image of Neptune’s puzzling rings and ring-arcs, which were first imaged by Voyager.

Inner moons of Neptune. Naiad is the innermost moon. Notice another newly discovered moon – provisionally designated S/2004 N 1 – visible here as a faint dot. Image via SETI Institute.

“Naiad has been an elusive target ever since Voyager left the Neptune system,” said Dr. Showalter. From Earth, Neptune is 2 million times brighter than Naiad, and the two are separated by only one arcsecond. “This is equivalent to the width of a human hair from 50 feet away,” noted collaborator Lissauer.

The team of astronomers needed to develop new techniques to suppress Neptune’s glare. Naiad was finally revealed, moving across a sequence of eight images taken by the Hubble Space Telescope during December 2004.

Strangely, Naiad appears to have veered significantly off course. The astronomers are puzzled by the fact that Naiad is now far ahead of its predicted orbital position. They wonder whether gravitational interactions with one of Neptune’s other moons may have caused it to speed up, although the details remain mysterious. Further observations will be needed in order to understand Naiad’s motion.

Kyk groter. | Neptune’s slender rings are seen with remarkable clarity in this composite image taken by the Hubble Space Telescope in 2004. Astronomers only recently developed the image processing techniques needed to suppress the planet’s intense glare and make this view possible. This image is composed of 26 individual exposures, which have been combined to produce the equivalent of a single 95-minute exposure. Image and caption via SETI Institute.

In addition to its moons, Neptune hosts a family of faint rings and ring-arcs. Voyager 2 first imaged the rings in 1989. The Hubble Space Telescope obtained images of the rings in 2004, which are only now revealed due to new processing techniques by astronomers. As seen in the archival Hubble images, Neptune’s ring arcs have been changing slowly in the years since their discovery. Whereas Voyager saw a set of four closely-spaced arcs, the leading two arcs have been fading away and are completely absent from the newest Hubble images. The trailing arcs, however, are essentially unchanged. This system of arcs is probably confined by the gravitational effects of the nearby moon Galatea, but the reason for the long-term changes is unknown.

Showalter and his collaborators had previously announced the discovery of a tiny moon of Neptune in July. That moon, which is no more than 20 km (12 miles) across, goes by the provisional designation “S/2004 N 1.” The new results reported today are based on further analysis of the same images, which were all obtained by Hubble between 2004 and 2009. Although 100-km Naiad is much larger than the moon announced in July, it orbits much closer to Neptune and so has proven to be much harder to detect.

“It is always exciting to find new results in old data,” Showalter remarked. “We keep discovering new ways to push the limit of what information can be gleaned from Hubble’s vast collection of planetary images.”


Mimas

The Cassini spacecraft turns the eye of its camera toward Saturn's moon Mimas and spies the large Herschel Crater which itself looks like the iris of an eye peering out into space.

Credit: NASA/JPL/Space Science Institute

Ontdekking

Mimas was discovered on Sept. 17, 1789 by English astronomer William Herschel, using his 40-foot reflector telescope.

Ground-based astronomers could only see Mimas as little more than a dot until Voyagers I and II imaged it in 1980. The Cassini spacecraft made several close approaches and provided detailed images of Mimas.

Oorsig

Less than 123 miles (198 kilometers) in mean radius, crater-covered Mimas is the smallest and innermost of Saturn's major moons. It is not quite big enough to hold a round shape, so it is somewhat ovoid with dimensions of 129 x 122 x 119 miles (207 x 197 x 191 kilometers, respectively). Its low density suggests that it consists almost entirely of water ice, which is the only substance ever detected on Mimas.

At a mean distance just over 115,000 miles (186,000 kilometers) from the massive planet, Mimas takes only 22 hours and 36 minutes to complete an orbit. Mimas is tidally locked: it keeps the same face toward Saturn as it flies around the planet, just as our Moon does with Earth.

Most of the Mimas surface is saturated with impact craters ranging in size up to greater than 25 miles (40 kilometers) in diameter. However, the craters in the South Pole region of Mimas are generally 12.4 miles (20 kilometers) in diameter or less. This suggests that some melting or other resurfacing processes occurred there later than on the rest of the moon. (Interestingly, the South Pole area of Enceladus appears to be the source of that moon's geysers.)

Its most distinguishing feature is a giant impact crater &ndash named Herschel after the moon's discoverer &ndash which stretches a third of the way across the face of the moon, making it look like the Death Star from "Star Wars." The Herschel Crater is 80 miles (130 kilometers) across &ndash one third of the diameter of the moon itself &ndash with outer walls about 3 miles (5 kilometers) high and a central peak 3.5 miles (6 km) high. The impact that blasted this crater out of Mimas probably came close to breaking the moon apart. Shock waves from the Herschel impact may have caused the fractures, also called chasmata, on the opposite side of Mimas.

That Mimas appears to be frozen solid is puzzling because Mimas is closer to Saturn and has a much more eccentric (elongated) orbit than Enceladus, which should mean that Mimas has more tidal heating than Enceladus. Yet Enceladus displays geysers of water, which implies internal heat, while Mimas has one of the most heavily cratered surfaces in the solar system, which suggests a frozen surface that has persisted for enough time to preserve all those craters. This paradox has prompted the "Mimas Test" by which any theory that claims to explain the partially thawed water of Enceladus must also explain the entirely frozen water of Mimas.

How Mimas Got its Name

The mythological Mimas was a giant who was killed by Mars in the war between the Titans and the gods of Olympus. Even after his death, Mimas' legs &ndash which were serpents &ndash hissed vengeance and sought to attack his killer.

Mimas was named by John Herschel, the son of discoverer William Herschel, who explained his choice of names for the first seven of Saturn's moons to be discovered by writing, "As Saturn devoured his children, his family could not be assembled round him, so that the choice lay among his brothers and sisters, the Titans and Titanesses."

Astronomers also refer to Mimas as "Saturn I" based on its distance being the closest to Saturn. The International Astronomical Union now controls the official naming of astronomical bodies